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HUMAN GENETICS

Cellular atlas of the human ovary using morphologically
guided spatial transcriptomics and single-cell sequencing
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The reproductive and endocrine functions of the ovary involve spatially defined interactions among specialized
cell populations. Despite the ovary’s importance in fertility and endocrine health, functional attributes of ovarian
cells are largely uncharacterized. Here, we profiled >18,000 genes in 257 regions from the ovaries of two pre-
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menopausal donors to examine the functional units in the ovary. We also generated single-cell RNA sequencing
data for 21,198 cells from three additional donors and identified four major cell types and four immune cell sub-
types. Custom selection of sampling areas revealed distinct gene activities for oocytes, theca, and granulosa cells.
These data contributed panels of oocyte-, theca-, and granulosa-specific genes, thus expanding the knowledge of
molecular programs driving follicle development. Serial samples around oocytes and across the cortex and me-
dulla uncovered previously unappreciated variation of hormone and extracellular matrix remodeling activities.
This combined spatial and single-cell atlas serves as a resource for future studies of rare cells and pathological

states in the ovary.

INTRODUCTION

The development, differentiation, and spatial organization of the
many cell populations in the human ovary are essential for its repro-
ductive and endocrine functions. The outer ~1.5-mm layer of the or-
gan, the ovarian cortex, contains quiescent primordial follicles, which
constitute the follicular reserve, and transitioning and primary folli-
cles and is identified by its dense tissue structure and lesser vascula-
ture (I, 2). The inner part of the organ, the medulla, contains the
growing secondary and antral follicles, as well as corpora lutea, pres-
ents with a looser extracellular matrix (ECM) structure, and contains
more abundant vasculature (2, 3). Both regions are maintained by
constant interactions among the stromal, immune, and endothelial
cells and other rarer cell types (4). The functional unit of the ovary, the
ovarian follicle, contains an oocyte in the center, surrounded by spe-
cialized somatic cells that secrete hormones and support the many
steps of oocyte maturation (5). In women of reproductive age, a small
portion of quiescent primordial follicles are periodically activated to
join the pool of growing follicles (6). The growing follicles expand
across both the cortex and medulla, each taking on a multilayered
three-dimensional architecture containing the oocyte surrounded by
cumulus granulosa, and outer layers of mural granulosa, and theca
cells, which are separated from the cumulus-oocyte complex by a
fluid-filled antrum (7). Paracrine cross-talk among the follicular cells
and endocrine signals from the hypothalamic-pituitary-ovarian axis
work together to trigger ovulation, which produces mature eggs for
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fertilization (5). The cellular diversity of the ovary and the complex
spatially defined structures in growing follicles have been difficult to
study, largely due to the scarcity of tissue from healthy women of re-
productive age, the lack of unbiased functional profiling, and the tech-
nical limitations of spatial transcriptomics (ST). Past studies using
animal models have identified major classes of ovarian structures and
their putative functions using transcriptomics (4, 8). However, human
follicle development and the role of nonfollicular cells in this process
remain poorly understood, supporting an ST-based characterization
of the human ovary to understand follicle development, hormone
production, and ovarian aging.

The ovarian cortex is of particular research interest as the home
of the follicular reserve and the microenvironment in which follicle
activation occurs. In recent years, a few single-cell sequencing studies
have reported that the cortex and the medulla contain the same
general cell types (9), but the two regions are histologically distinct,
e.g., having different ECMs tailored to their functions and different
gradients of growth factors (10). The mechanisms driving follicle
activation, either within the follicular structure or from the micro-
environment outside the follicles, are poorly understood. Studies of
the oocyte compartment of primordial and primary follicles have
aimed to identify markers of quiescence and activation, but isola-
tion of oocytes for sequencing may alter their transcriptome or lead
to spontaneous activation (11, 12), underscoring the need to collect
data from intact tissues to understand what defines these early stages
of follicle development. With the recently emerged ST technology,
primordial and primary follicles and the surrounding cortical stro-
ma can be sampled with minimal perturbation to uncover cortex-
specific gene activities related to early folliculogenesis. Likewise,
ST presents a previously unattainable opportunity to profile the
gene activities in diverse types of follicles recognized by their mor-
phology and spatial context. Previous studies have reported on the
transcriptional profiles of granulosa and theca cells (9, 13), but
hypotheses surrounding oocyte-cumulus granulosa cell bidirectional
cross-talk and factors influencing the follicular cell phenotypes have
not been validated using a spatial approach.
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In this study, we compiled a functionally targeted ST dataset of
the human ovary, composed of 257 regional samples collected using
NanoString’s GeoMx platform from the ovaries of two reproductive-
age, premenopausal donors. We also collected single-cell RNA se-
quencing (scRNA-seq) data of 21,198 dissociated cells from three
additional donors. Using these data, we uncovered transcriptional
profiles of primordial and primary oocytes sampled from their na-
tive microenvironment, gene signatures of theca and granulosa cells,
spatially defined patterns of gene expression across the medulla and
cortex, and major stromal and immune cell types of the human ova-
ry. Comparisons between our ST and scRNA-seq datasets confirmed
the robustness of the GeoMx platform for sampling specific local re-
gions of small size and distinct function. This integrated analysis led
to a comprehensive cell atlas of the healthy reproductive-age human
ovary, revealing spatially defined transcriptional patterns and adding
to our knowledge on the cellular diversity of this organ.

RESULTS

ST of the human ovary

We used the GeoMx technology to analyze samples from 74 regions
of interest (ROIs) in a whole-ovary tissue cross section from a healthy
donor, followed by samples from 147 ROIs collected from a second
donor. The donors were postpubescent and premenopausal (18 and
27 years old) and had no known reproductive disorders (for complete
donor information, see fig. S1A). The ROIs were manually selected on
the basis of histological features in different tissue locations to repre-
sent known functional units in the ovary (Fig. 1A). The 92 samples in
donor 1 represented 14 ROI types, and the sampling in donor 2 was
designed to repeat and validate some functional types while extend-
ing to additional types based on the analysis of donor 1 data and
structures uniquely present in the donor 2 ovary. In all, we analyzed
19 prespecified ROI types (see additional details in fig. S1B and Mate-
rials and Methods). Some ROIs produced multiple split samples from
the use of antibody-guided collection from subregions within the ROI
[called areas of interest (AQOIs)], leading to 92 and 165 samples, re-
spectively, from the two donors. A brief description of the ROI types
is as follows. Types 1 to 5 represent regions in the ovarian cortex: ovar-
ian surface, cortex, cortex layers, primordial/primary follicles, and
primary follicle rings (Fig. 1A). Types 6 to 9 represent regions in the
medulla: medulla, follicle-adjacent medulla, medulla cross section,
and vascular regions. Types 10 to 14 were sampled from growing
ovarian follicles (Fig. 1, B and C): secondary follicle, oocyte from an
antral follicle, cumulus granulosa, mural granulosa (referred to from
now on as granulosa), and theca (Fig. 1A). Types 15 to 16 were sam-
pled from an ovarian cyst in donor 2: cyst inner layer and cyst outer
layer (Fig. 1, A and C). The remaining types were sampled using
antibody-guided selection of AOIs enriched for specific cell types:
CD68™ (type 17) for macrophages, SMA™ (type 18) for myofibroblasts
and smooth muscle cells, and PGR* (type 19) to identify cells express-
ing progesterone receptor (PGR) (Fig. 1A).

The ROIs adopted different sizes and shapes and varied by cell
counts and sequencing depth. For example, the 74 ROIs from donor
1 covered an average area of ~60,000 pm” (range: 7619 to 359,038 pm?),
contained a monolayer of ~400 cells (range: 0 to 2544, based on
nuclei counts), and yielded ~806,000 identified transcripts (range:
57,018 to 14,388,977) among the 18,676 unique protein-coding
genes analyzed by the GeoMx Human Whole Transcriptome Atlas
panel. Likewise, the 147 ROIs from donor 2 covered an average area
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of ~30,000 um? (range: 576 to 113,204 um?), contained an average of
240 cells (range: 0 to 1497), and yielded an average of ~507,000 tran-
scripts (range: 24,863 to 3,404,489).

Cluster analysis of the 74 ROI-based samples in donor 1 and the
165 AOI-based samples in donor 2 (Materials and Methods) re-
vealed six and nine clusters, respectively (Fig. 1, D and E). Notably,
although each region contained a mixture of a few hundred cells,
their observed clusters mapped to the prerecognized functional
types of ROIs from the cortex, medulla, and follicle-enriched sites
and were consistent between the two donors (highlighted by color-
coded cross-tabulation in Fig. 1F). For example, cluster 1 in donor 1
contained 21 of the 22 ROIs from the cortex (ROI types 1 to 4);
clusters 2 and 3 corresponded to the five ROI types (6, 7, 9, 17, and
18) from the cortex to the medulla (Fig. 1F). The ROIs enriched for
theca cells and those enriched for cumulus granulosa (type 12) and
granulosa cells (type 13) aggregated into well-separated cluster 4
and cluster 5, respectively, in perfect consistency between the two
independently sampled follicles (Fig. 1, D and F). The theca- and
granulosa-enriched ROIs were spatially adjacent (Fig. 1B, insets);
thus, the fact that their expression profiles were distinguishable (as
clusters 4 and 5) confirms the location specificity of the technology.
Cluster 6 is formed by the single ROI taken from the oocyte of an
antral follicle (Fig. 1F), and it was clearly separated in principal
component (PC) 3 (fig. S1C). Similarly, in donor 2, clusters 1 and 2
corresponded to the surface regions of the cortex, while clusters 3, 4,
5, and 6 mainly contained ROIs sampled from cortex and medulla to
represent local characteristics, such as the ovarian cyst and antibody-
targeted subareas enriched for cells expressing cluster of differentia-
tion 68 (CD68) or PGR (Materials and Methods). Donor 2 data
confirmed and extended these patterns. For example, ROIs intended
to capture theca cells and granulosa cells arose in cluster analysis as
distinguishable groups: cluster 7 for theca and cluster 8 for granu-
losa. Further, nine ROIs in donor 2 had a subarea expressing deleted
in azoospermia like (DAZL) analyzed and they stood out as cluster
9, along with two additional oocytes from primordial and primary
follicles (Fig. 1, E and F). In short, although each of the locally sam-
pled regions contained a mixture of cells, we were able to reproduc-
ibly identify robust gene activity signatures for the oocytes (cluster 6
in donor 1 and cluster 9 in donor 2), the theca cells (clusters 4 and 7
in the two donors), and the granulosa cells (clusters 5 and 8), along
with local characteristics in preselected ROI types across cortex and
medulla. In the sections below, we will describe these findings in
more detail.

Gene expression profile of primordial and primary oocytes

As described above, we profiled an oocyte sample from an antral fol-
licle in donor 1 and it had a distinct gene signature (as cluster 6). Since
primordial and primary oocytes are too small to be individually de-
fined ROIs, we relied on an antibody against the oocyte-specific pro-
tein DAZL to target the oocyte subarea within each ROI (Materials
and Methods; Fig. 2A), leading to nine pairs of DAZL* and DAZL~
samples. In each ROIL, the DAZL" subarea contains multiple primor-
dial or primary follicles. This allowed us to use the nine DAZL*
samples to represent oocytes in primordial and primary follicles, thus
increasing the sample size of oocytes from 1 in donor 1 to 11 in donor
2 (9 DAZL" plus 2 individually collected primary follicles). The
11 cluster 9 samples, when compared with the other 8 clusters, showed
higher expression of previously reported oocyte markers, such as
TUBBS, ZP3, LHX8, and OOSP2 (Fig. 2B) (1), and uncovered
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Fig. 1. ST analysis of the human ovary. (A) An illustrated summary of ROI types (all diagrams created with biorender.com). We used the histological image of an adjacent
whole-ovary tissue section to select ROIs to represent 19 functional types of local cell communities. (B) Hematoxylin and eosin (H&E) (top) and immunofluorescent (IF)
images (bottom) of fixed tissue sections from donor 1. Left, whole tissue section. Right, zoomed-in view of an antral follicle. Gray, green, and yellow colors indicate SYTO82,
SMA, and CD68 staining signals, respectively. Scale bars, 2.5 mm (left) and 200 pm (right). (C) H&E and IF images of fixed tissue sections from donor 2, in the same scale
and layout as in (B), except that SMA was not used, and red indicates DAZL signal. Black arrow indicates ovarian cyst; white arrows indicate DAZL expression in primordial/
primary follicles. (D and E) PC plots (PC1 and PC2) of the 74 ROIs from donor 1 (D) and 165 ROIs from donor 2 (E), colored by the clusters identified. (F) Annotation of the
observed clusters by their mapping to the predefined ROI types. Sample number cross-tabulation between the 19 ROI types (rows) and the 6 and 9 clusters (columns) in
the two donors is shown. The major categories of ROI types and their mapped clusters are highlighted by color: orange, cortex; blue, medulla; yellow, theca; green, gran-
ulosa; purple, oocytes. **ROI segments sampled as DAZL". *ROI segments without DAZL antibody localization.
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Fig. 2. Transcriptional signature of human oocytes. (A) Process of antibody-guided sample collection from subareas of an ROL. In this example, after the sample in
DAZL"* area (shown in orange) is collected by photo-activated cleavage, the sample in the remaining areas of the ROI (DAZL™, shown in purple) is collected in a second
step, yielding a pair of samples from a single ROI. Created using biorender.com. (B) Expression pattern of four previously known canonical oocyte marker genes across the
nine clusters in donor 2, where the y axis is log(CPM) for all panels. (C) Expression of four of previously unreported marker genes, where the y axis is log(CPM) for all panels.
(D) Expression specificity of the 76 oocyte marker genes (in rows) compared across, from left to right, 74 samples from donor 1 ordered by the 6 clusters, and 165 samples
from donor 2 ordered by the 9 clusters (data S5). Genes shown in (B) and (C), along with additional genes of interest, are indicated on the heatmap. Per-gene standardiza-

tion and color scale are explained in Materials and Methods.

previously unreported oocyte markers such as PADI6, UCHL1, ZFAN-
D2A, and REC114 (Fig. 2C). PADI6, which codes for a member of the
peptidyl arginine deiminase family, localizes to cytoplasmic lattices in
mouse oocytes and has been shown to be essential for early embryonic
development (14-16) but has not previously been reported as oocyte-
specific among ovarian cells. Likewise, UCHLI codes for a member of
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the ubiquitin C-terminal hydrolase family of proteins, whose activity
contributes to fertilization and embryogenesis in mice (17). REC114
codes for a protein involved in the programmed formation of DNA
double-strand breaks during meiosis, but its functional importance for
oogenesis has not been extensively characterized in mice or humans
(18). Last, ZFAND2A codes for a protein involved in zinc ion binding
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activity and, although not well characterized in humans, has been pre-
viously reported as up-regulated in human oocytes (19). These studies
suggest that these genes may have biological importance for oocyte
development, and here, we have shown their oocyte-specific expres-
sion compared to all other ROIs. The 11 cluster 9 samples from donor
2 recapitulated the pattern seen in the cluster 6 sample from donor 1.
In all, we identified 76 markers for human primordial and primary
oocytes (Fig. 2D and data S5), many of which are involved in meiosis
(HSP90A1, UBB, RALB, ESRP1, EIF4ENIF1, CDK7, and ZAR1I). This
data file also includes extensive annotations on each gene’s possible
role in oocyte maturation and folliculogenesis and then orders genes
into tiers based on these citations as an established marker, a previ-
ously unreported marker with documented biological relevance, a pre-
viously unreported marker with little biological relevance, a marker
with poor literature annotation, or a marker with relatively poor statis-
tical significance.

Gene signatures of theca and granulosa cells

Among the 74 ROIs in donor 1, the 5 theca and the 11 granulosa
ROIs separated into two clusters (clusters 4 and 5, respectively; Fig. 1,
D and F). Focused principal components analysis (PCA) of these
samples revealed a three-way separation that also distinguished the
seven mural granulosa samples from the four cumulus granulosa
samples (Fig. 3A). These distinct profiles were reproduced in donor 2
(Fig. 1, E and F), where focused PCA separated the 9, 12, and 11 ROIs
enriched for the theca, cumulus granulosa, and granulosa cells into
three groups (Fig. 3B), although they were collected from two antral
follicles. Differential expression (DE) analysis identified 96 granulosa-
specific genes and 45 theca-specific genes (Materials and Methods;
Fig. 3C and data S5). The stark contrast in expression of these genes
across the two cell types exemplifies their distinct functions. In addi-
tion, hundreds of other genes were high in both theca and granulosa
cells, but not strongly different between them (data S2).

In donor 1, we also sampled a series of four cumulus granulosa
ROIs, each 30 pm wide, corresponding to layers surrounding the oo-
cyte from an antral follicle (Fig. 3D), which was the single sample in
cluster 6. We performed a regression analysis across the series of four
ordered samples to identify potential gene expression changes in the
vicinity of the oocyte. Moving outward from the oocyte, we observed
increased expression of Wnt signaling genes (DDIT3, DKK1, LEF1,
TLR3, and ZFP91) (Fig. 3E). Follicle-stimulating hormone (FSH)-
mediated down-regulation of this pathway in granulosa cells is im-
portant for progesterone production and cumulus cell expansion
before ovulation (20). Conversely, there was increased expression of
genes related to protein kinase A (PKA) signaling (AKAP12, MIF,
RDX, and SPHKAP) moving inward to the oocyte. PKA signaling in
granulosa cells has been well documented in the literature; it modu-
lates FSH-induced granulosa cell differentiation and oocyte matura-
tion as follicle development proceeds (21, 22).

Transcriptional gradient in the ovarian cortex and functional
heterogeneity across cortex and medulla

To investigate transcriptome signatures in the outer surface of the
ovarian cortex, we selected 11 consecutive regions, each 30 pm thick
and 350 pm wide, covering the outer 0.33-mm layer of the donor
1 tissue (Fig. 4A). Notably, although adjacent regions were only
30 pm apart, the gene expression profiles of this linear sample series
showed an 11-step, ordered transition (fig. S4A). Linear regression
analysis by layer number revealed 313 genes with a significant [false

Jones et al., Sci. Adv. 10, eadm7506 (2024) 5 April 2024

discovery rate (FDR) < 0.05] depth-related expression gradient in the
outer cortex (Fig. 4B and data S3). Genes with increasing expression
moving inward from the surface epithelium included those in-
volved in hormone signaling (NR4AI, CEBPD, STAR, and AD-
AMTS4), insulin-like growth factor binding protein (IGFBP) signaling
(IGFBP2, IGFBP3, IGFBP4, IGFBP6, and IGFBP7), and ECM remod-
eling (VIM, COL1A2, TIMPI1, TIMP2, MMP2, COL8A1, COLI2Al,
COLI4A1, COL16A1, and COLI8AI) (Fig. 4B). Both NR4AI and
CEBPD encode transcription factors related to hormone synthesis.
NR4A 1 stimulates the expression of STAR and other genes involved in
androgen production via the PKA pathway (23). Luteinizing hormone
(LH) stimulates the expression of CEBPD, and the resulting transcrip-
tion factor, CCAAT/enhancer-binding protein 8, has been implicated
in LH-triggered events in mature granulosa and theca cells (24, 25).
These results show a high-resolution, spatially resolved gradient in the
outer cortex, with progressively higher levels of hormone signaling
when moving deeper into the cortex layers and more proximal to the
growing follicles and the medulla.

To expand this approach when analyzing the donor 2 tissue,
we sampled five linear series of consecutive regions: two “medul-
lary series” (M1 and M2) traversing the short and long axes of
the tissue section, and three “cortex series” (C1 to C3) covering
1.5 mm of the cortex (Fig. 4C). Each series contained 15 or 16
consecutive straight-line samples. The cortex series started at the
surface epithelium from three sides of the tissue section, with
sample width of 150 pm and depth of 100 pm. The medulla series
had the same width (150 pm) and depth of 500 pm, and they con-
nected with the cortex series at the end. In the overall clustering
of all donor 2 samples, most of the ROIs from the three cortex
series fell into clusters 1 (n = 16) and 2 (n = 20), which are cortex
sample clusters, while a few others were mixed into other clusters,
i.e., five in cluster 4, which “tracks” toward cluster 6—the CD68™*
samples (Fig. 1E), and six in cluster 7—mainly containing theca
samples (Fig. 1F). The medullary series were more homogeneous,
with 28 of the 31 samples forming cluster 5, which also contained
seven of the nine DAZL™ samples surrounding primordial and
primary follicles (Fig. 1F). Focused PCA of the five series and the
nine DAZL™ samples showed these patterns in more detail (PC1
to PC3 in Fig. 4D and PC1 and PC2 in fig. S4B). Samples in each
of the three cortex series covered a wide PC1 to PC3 space, yet
they did not follow a linear gradient and did not clearly replicate
each other (fig. S4C), reflecting diverse functional characteristics
being sampled. For example, the cortex series drove clusters 1 and
2, yet they came near cluster 3 (Fig. 1E), which had all 10 samples
for ovarian cyst, along with 4 of 5 of PGR* and 3 of 12 CD68"
samples (Fig. 1F). Other cortex samples may have been near
blood vessels, regions of atresia, or medulla samples with high
CD68 expression. In general, the three cortex and the two me-
dulla series are separable in PC3 (Fig. 4D), with one of the cortex
series resembling the two medullary series in PC1 (fig. S4B),
while the nine DAZL™ samples, which were from cortex regions
dense with primordial and primary follicles (Fig. 2A), appeared to
“bridge” the space between the cortex series and the medullary
series (Fig. 4D). In sum, while the 11-sample series in the outer
cortex of donor 1 showed a clean, linear gradient using 30-pm
layers, the three cortex series of 1.5-mm tissue depth using 100-um
layers in donor 2 revealed more heterogeneity, and the two me-
dulla series showed a relatively homogeneous profile (cluster 5)
for samples in the interior of the ovary.
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Color scale explained in Materials and Methods. (D) Four concentric ring-shaped ROIs, for cumulus granulosa regions surrounding the oocyte in an antral follicle from
donor 1 (scale bar, 100 pm). Purple denotes the oocyte in an antral follicle (“O0”), while green denotes the four concentric rings of cumulus granulosa cells. (E) Regression
analysis over the ordered series of four ROIs in (D) identified 1407 DE genes (P < 0.05), shown as a heatmap of genes (in rows) across the four samples. Color scale explained
in Materials and Methods.
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Fig. 4. Transcriptional heterogeneity across cortex and medulla areas. (A) In donor 1, a series of 11 consecutive tissue layers were sampled at the surface of the cortex,
each with 30-um depth and 350-pm width (scale bar, 2.5 mm; scale bar for inset, 100 pm). H&E image is shown. (B) Linear regression analysis over the 11 ordered samples
identified 313 differentially expressed genes (P < 0.05), shown as a heatmap, with notable genes indicated to the right. Color scale explained in Materials and Methods.
(C) Five straight-line series of 15 to 16 consecutive samples for donor 2, three for cortex regions (three warm colors) and two traversing the medulla (two blue colors), in-
dicated on the H&E image (scale bar, 2.5 mm). (D) PC1 to PC3 plots of the three cortex and two medulla series, each with 15 to 16 samples, plus the nine DAZL™ subareas
near the follicles. The six series are shown in different colors. (E) Comparison between the nine DAZL™ near-follicle ROIs and the three surface-most cortex ROls, one from
each of the three cortex series, identified genes that are significantly (FDR < 0.05) higher (red, n = 33) and lower (blue, n = 21) in follicle-rich cortex versus cortex without
follicles. The “volcano plot” of fold change (x axis) and negative logged FDR (y axis) is shown.

We performed a series of DE analyses among these clusters to
elucidate their functional characteristics (Materials and Methods).
The medulla samples (cluster 5), when compared to cortex samples
(clusters 1 to 3), showed higher expression of WFIKKN2, GSTM5,
and IGFBP5 and enrichment for terms related to protein targeting
to the endoplasmic reticulum and RNA translation (data S3 and S4,
“DE11”). Conversely, the cortex samples showed higher expression

Jones et al., Sci. Adv. 10, eadm7506 (2024) 5 April 2024

of APOC1, DNAI3, CYP17A1, and DHCR24 (data S3 and S4, DE11).
Within the cortex samples, clusters 1 to 4 represented several char-
acteristics. Cluster 4 was connected with CD68* samples in cluster 6
(Fig. 1E), suggesting that they carry local inflammation signatures.
Cluster 3 (dark red in Fig. 1E) contained all 10 cyst samples and
likely represents signatures of dysregulated follicle development or
regressing follicles. Cluster 2 contained all six “rings” around the
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primary follicles, while cluster 1 (bright red), consisting entirely of
16 samples from the cortex series without drawing any other ROI
types, was closest to the medulla profile in cluster 5 (Fig. 1F). In data
S3 and S4, we compared clusters 1/3 against cluster 2 (DE8) and
cluster 3 against cluster 1 (DE7) for increasingly finer distinctions
among different types of cortex regions. For example, clusters 1/3
showed higher expression than cluster 2 of DHCR24, CYP17Al,
APOCI, and GSTA1 and enrichment for gene ontology terms related
to cellular response to steroid synthesis and cholesterol metabolism.
Conversely, cluster 2 showed higher expression of WFIKKN2,
GSTM5, and IGFBP5 and enrichment for terms related to protein
targeting to the endoplasmic reticulum and RNA translation. Simi-
lar DE results for the cortex and medulla clusters for donor 1
(Fig. 1D) are also included in data S3 and S4.

We also compared transcriptional profiles of (i) cortex regions
dense with follicles: the nine DAZL™ samples against (ii) the three
surface-most ROIs, which contained no follicles, one from each of
the three cortex series. Both groups are composed of ovarian corti-
cal stromal cells but differ in their proximity to ovarian follicles:
follicle-rich versus follicle-null. DE analysis revealed 38 genes with
significantly (P < 0.05) higher expression in the follicle-rich cortex,
including SPINT2 and ARHGEF15, and 26 genes with significantly
(P < 0.05) lower expression (Fig. 4E). SPINT2 codes for the protein
HAI2 and was highly expressed in granulosa cells previously (5).
HAI2 is a key inhibitor in the hepatocyte growth factor (HGF) sig-
naling pathway, which has been shown to modulate the remodeling
of the ovarian surface epithelium and cortex after the cyclic disrup-
tion caused by ovulation (26). ARHGEF15 was recently identified in
Sertoli cells and shown to be essential to spermatogenesis (27). The
identification of these genes in follicle-rich cortex may aid the un-
derstanding of how the cortex maintains a microenvironment con-
ducive to follicle development, from quiescence to activation.

scRNA-seq of three ovaries from reproductive-age women
Other than the two samples analyzed for ST, we collected scRNA-seq
data from three additional donors (donors 3 to 5, ages 28, 37, and 31;
fig. S1A). In all, we measured 37,047 cells, of which 21,198 passed
quality filtering (Materials and Methods), with an average of 6950
unique transcripts and 2066 detected genes per cell. Clustering anal-
ysis for each donor consistently revealed four major cell types (donor
5 in Fig. 5A, donors 3 and 4 in fig. S5, A and B): stromal cells, im-
mune cells (appearing as two clusters in the joint analyses of all cells
and as subclusters in Fig. 5B), endothelial cells, and pericytes, and
they were identified by known marker genes (Fig. 5C). Endothelial
cells showed high expression of their canonical markers VWF, PE-
CAM1I, CD34, and CLDN5 (9, 13), as well as NOTCH4, which is
typically confined to arterial and sprouting endothelial cells (28).
Pericytes were identified by their characteristic expression of RGS5,
NOTCH3, ACTA2, and MUSTNI (Fig. 5, C and D). Pericytes in our
data showed high expression of PDGFRB, which has been reported
in other organ systems for platelet-derived growth factor (PDGF)
signaling between pericytes and endothelial cells, and it is also es-
sential to proper theca cell development and steroidogenesis (29).
Focused clustering of the immune cells from all three donors re-
vealed four immune cell subtypes (Fig. 5B), which were annotated
as T cells (CD3D, CD3G, and IL7R) (9, 13), natural killer (NK) cells
(KLRD1, TRCD, and GNLY) (24, 30), macrophages (CD68, CD14,
and FOLR2) (9, 13), and mast cells (KIT, TPSB2, and TPSABI) (31,
32) (Fig. 5C). Additional genes that are specific for the three major
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cell types and the four immune cell subtypes (Fig. 5D and data S2)
add to the expanding cell atlas for the healthy human ovary.
Stromal cells had by far the largest number, reflecting the domi-
nance of this cell population in the ovary. As a group, they were char-
acterized by mesenchymal cell markers DCN and PDGFRA and the
more recently reported ovarian stromal cell markers APOE, LUM,
ARX, and FHL2 (Fig. 5D) (9, 13). Focused analyses of the stromal cells
did not reveal clear subtypes (see Materials and Methods for details).
Since the spatial analyses generated robust gene lists for the oocyte,
theca cells, and granulosa cells, we used these marker panels to score
each stromal cell for its chance to be a theca-like or granulosa-like stro-
mal cell and, in even rarer cases, be an oocyte. After carefully selecting
the subset of stromal cells with high sequencing depth and using genes
with high detection rate, we projected the stromal cells for each of the
three donors separately and then asked whether the theca, granulosa,
and oocyte scores tend to aggregate in some regions of the projection.
Of the multiple scoring algorithms examined, a few showed that some
stromal cells scored high for the theca gene panel, and many of them
also scored high for the granulosa panel, although to a lesser degree
(fig. S5B). Nonetheless, these stromal cells did not clearly separate as a
distinct subtype. The oocyte scores did not reveal any clear-cut rare
population to be potential oocytes (fig. S5B). This is not unexpected, as
oocytes are extremely rare in the dissociated cells from the tissue and
there is a ~30-pm size limit in the cell-capturing apparatus. In sum,
stromal cells were the most abundant in our data and they appeared
homogeneous, with some evidence for a rare subset to be theca-like.

Comparisons with previous scRNA-seq studies

We compared our marker gene lists from spatial data and the
major cell types from scRNA-seq with two previously published
scRNA-seq data for human ovary. Fan et al. (13) identified five
major cell clusters, including a mixed theca/stromal (Th/S) popu-
lation and a granulosa cluster (G). We calculated centroid-centroid
cross-correlation values between each of the five clusters in that
study and each of our six ROI clusters in donor 1 and nine ROI
clusters in donor 2 and observed the expected high correlation
between Fan ef al.’s (13) granulosa cluster and our granulosa ROI
clusters (fig. S6A). The correlation with the Th/S cluster was high
for our theca clusters, but also high for our cortex and medulla
ROIs. The reduced specificity is likely because Th/S did not distin-
guish between the theca and stromal cells. Next, we examined the
expression pattern of our three lists of marker genes in Fan et al.’s
(13) cluster centroids. As expected, our granulosa markers show
high expression in the G cluster, while our theca markers were
moderately high in Th/S (fig. S6B).

Wagner et al. (9) identified six major cell types, including a
granulosa cluster and an oocyte cluster. Centroid-centroid correla-
tion values revealed their high correspondence with our granulosa
and oocyte ROI clusters (fig. S6C). Likewise, expression patterns
of our marker genes showed high specificity in Wagner et al.’s (9)
granulosa and oocyte cluster centroids (fig. S6D).

To compare with our scRNA-seq data, we calculated centroid-
centroid correlation values between our four major cell types with
Fan et al’s (13) five cell types (fig. S6E) and with Wagner et al.’s
(9) six cell types (fig. S6F), and observed that the stromal, immune
cells, and endothelial cells match across all three studies, while
pericytes in Wagner et al. (9) and in our study match the smooth
muscle cells in the Fan et al. (13) study. Last, we regenerated the
t-distributed stochastic neighbor embedding (¢-SNE) projection
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Fig. 5. Cell types in the human ovary identified by scRNA-seq analysis. (A) t-SNE projection of 6339 cells from donor 5 colored by the four major cell types identified.
(B) UMAP projection of immune cells (n = 863 from three donors) colored by the fourimmune cell subtypes identified. (C) Known marker genes used to annotate the three
major cell types and four immune cell subtypes. Color indicates expression level, while symbol size indicates detection rate. (D) Centroid data for marker genes for the
three major cell types and four immune cell subtypes. Number of genes displayed: stroma, 119; pericyte, 92; endothelial, 120; mast cell, 3; macrophage, 3; T cell, 9; NK cell,
19 (data S6 and S7). Additional literature-based marker genes are indicated on the right. Color scale explained in Materials and Methods.

of Fan et al.’s (13) single cells and calculated, for each cell, a “theca
score” using our theca markers (Materials and Methods). In their
Th/S cluster, there seemed to be a subcluster with high theca
scores (fig. S6G), suggesting the existence of a subpopulation of
theca-like cells that could have been revealed with the theca
markers from our spatial data. We then calculated the correla-
tion values between our four immune cell subtypes and Fan et al.’s
(13) finer subtypes (fig. S6H). While the mast cells we identified
did not have a clear correspondence, our NK, T cell, and macro-
phage clusters correspond to their immune subtypes 1, 2, and 3,
respectively. In sum, the comparisons with the two previous studies
strengthened the validity of the three marker gene lists from our
spatial data and verified the annotation of four major cell types in
our scRNA-seq data.

Jones et al., Sci. Adv. 10, eadm7506 (2024) 5 April 2024

DISCUSSION

In this study, we systematically analyzed the spatial and cellular hetero-
geneity of the human ovary using samples from donors without a
history of cancer, previous androgen therapy, or known diseases that
affect ovarian function. In contrast to biopsies taken during surgery,
the whole cadaveric ovaries we used allowed us to select functional
regions throughout the tissue for spatial analyses and to isolate single
cells from both cortex and medulla. In the past, studies of ovarian
function have faced at least three challenges. First, dissociated cells
are dominated by the most abundant cell type: the stromal cells,
while the functionally most important cells—those of the follicles—
are exceedingly rare, even in the ovarian cortex. Second, cell sorting
efforts to enrich for oocytes, theca cells, or granulosa cells, and at-
tempts to visualize them in the intact tissue, relied on a few known
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markers, without characterizing the activities and spatial patterns of
other genes in an unbiased fashion. Third, some of the earliest and
most popular ST technologies are only able to analyze coarse regions
at prespecified grid points (e.g., Visium’s spots are 55 pm in diameter,
with a spot-to-spot distance of 100 pm), yet the functional units of
the human ovary, especially the primordial and primary follicles, are
in the size range of 20 to 50 pm. We addressed these challenges by
adopting NanoString’s GeoMx technology, which is unbiased (i.e., it
profiles nearly all coding genes) and allows focal analyses of individ-
ually selected tissue areas, or even subareas targeted by specific anti-
bodies. In all, we analyzed 92 samples from 74 ROIs in one donor,
followed by 165 samples from 147 ROIs from a second donor, cover-
ing a wide variety of functional regions across the whole ovary. This
strategy allowed us to avoid spending most of the resources on col-
lecting data from the stromal cells and yielded local transcriptomic
profiles around both primordial/primary and antral follicles. We
then complemented this powerful series of spatial data with scRNA-
seq, identifying major cell types such as stromal cells, pericytes, en-
dothelial cells, and four subtypes of immune cells.

For oocytes, we profiled an oocyte from an antral follicle in do-
nor 1 and 11 samples in donor 2 representing primordial and pri-
mary oocytes. These samples cluster well among themselves and are
clearly enriched for canonical oocyte markers (Fig. 2B), confirming
that the GeoMx technology, including the use of anti-DAZL anti-
body-guided sample collection, can profile oocytes in tissue sec-
tions. These data led to a list of 76 oocyte-specific genes, including
those related to meiosis (REC114) and embryonic development
(PADI6 and UCHLI) (Fig. 2, C and D). As a community resource,
this list provides many more gene candidates than before for devel-
oping reagents to study oocytes of different stages.

Similarly, we took advantage of the custom ROI selection capa-
bility of GeoMx to identify dozens of genes specific for theca and
granulosa cells (Fig. 3C). These two cell types reside in adjacent ar-
eas within developing follicles and are difficult to dissect into sepa-
rate samples. Thus, the fact that they arose in our data as distinct
clusters (Fig. 1, D and E) and were stably reproduced across follicles
and across donors confirms the functional identity of these cells as
well as the location specificity of the technology. The list of theca-
specific genes included canonical theca cell markers CYPI7AI,
PTCH2, APOE, DHCR24, INSL3, BGN, and CYP11A1 (33, 34) and
the more recently reported ANPEP (35) (data S5), as well as those
not previously reported for theca, but having notable biological rel-
evance, such as SI100A13, ALAS1, FDX1, and DLKI1 (data S5).
S100A13 codes for a calcium-binding protein and has been reported
as enriched in Leydig cells in a comparison of cell lines from differ-
ent organ systems (36), but its biological importance in Leydig cells
or their ovarian counterpart, theca cells, has yet to be elucidated
(36). Notably, the list included FDX1 and ALASI, which play impor-
tant roles in cholesterol acquisition and heme biosynthesis, respec-
tively, both of which are important for the conversion of cholesterol
into androgens by the P50 steroidogenic enzymes in theca cells (37,
38). Last, DLKI codes for a transmembrane protein that has been
implicated in growth hormone signaling, which is essential for theca
cell differentiation (21, 39).

Likewise, the list of granulosa-specific genes included canonical
marker genes HSD17B1, INHBB, FOXL2, and AMH and the recently
reported TNNI3, MAGED?2, CD99, SERPINE2, CDH2, and BEX1 (9,
13), along with many histone protein-coding genes (data S5), which
have not been reported for granulosa cells. However, numerous studies
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have suggested that proliferating granulosa cells undergo large-scale
epigenetic change during late folliculogenesis, partly driven by
gonadotrophins such FSH (40-43). The list also included genes in-
volved in granulosa cell-oocyte signaling, such as the transzonal
projection-related genes FSCN1 and MYO10, and the tetraspanin
protein gene TSPAN7, which is involved in extracellular vesicle-
mediated signaling between granulosa cells and the oocyte (44, 45).
The list confirmed many of the genes previously reported as up-
regulated in granulosa cells in RNA-based comparisons: LIMS2,
CORO2A, LAMA1, FAM78A, ST6GAL2, and MFAP2 (20, 46, 47).
Further analyses revealed the finer distinction between cumulus
granulosa and the other granulosa layers (Fig. 3, A and B), and a
gene activity gradient across concentric layers of cumulus granulosa
around the oocyte in an antral follicle (Fig. 3, D and E). More detailed
analyses of such gradients are needed to examine the long-standing
hypothesis of bidirectional cross-talk between the oocyte and the
cumulus cells during follicle development (1-3).

We collected nine sample pairs in cortex regions dense with pri-
mordial and primary follicles, where the DAZL* sample of the pair
corresponds to the oocyte, while the DAZL™ sample represents cor-
tex cells surrounding the follicles (Fig. 2A). The DAZL", “follicle-
rich” cortex regions gave us the opportunity to compare them with
other “follicle-null” outer cortex samples (fig. S4D) to identify genes
that may be involved in the development of primordial and primary
follicles through the emergence of theca and granulosa cells, and
through their spatial organization around the maturing oocyte. This
analysis highlighted genes related to steroidogenesis (ARHGEF15
and GSTPI) and tissue remodeling (SPINT2) (Fig. 4E), and they
need further validation to understand how the ovarian stroma influ-
ences follicle quiescence and early development.

Since it is impractical to cover the entire tissue section with ROIs,
we systematically profiled serial samples across several cortex and
medulla regions. In donor 1, we used 11 consecutive samples, at
30-pm-thick increments, to study the outer cortex, and observed a
graded change in genes related to hormone signaling (NR4A1, STAR,
and ADAMTS4) and ECM remodeling (VIM and COL8/12/14/16/18)
(Fig. 4, A and B). Using a similar approach in donor 2, we sampled
three straight-line, linear series, with 100-um increments, to span the
full 1.5-mm depth of the cortex, and two series of medulla samples to
traverse the entire long and short axis of the tissue. These cortex and
medulla series did not show clean gradients (Fig. 4C); rather, they
confirmed the medulla-cortex difference (Fig. 4D) we had seen in
donor 1 and revealed transcriptional variation across the surface and
the interior of the ovary. For example, the cortex series, from the very
surface to 1.5 mm deep, did not always “start” in the same transcrip-
tomic state (fig. S4D), nor end in similar profiles; rather, the 15 or 16
samples in each series “visited” multiple functional characteristics
(fig. S4C) that may correspond to areas of atresia, vasculature, or im-
mune activity, which were not evident at the time of sample selection.
Nonetheless, some broad patterns did emerge: The two medulla se-
ries are similar and clustered away from the three cortex series
(Fig. 4D), and one of the three cortex series is more medulla-like
(fig. S4B). Within the cortex samples, we found a steroidogenic pro-
file in clusters 1 and 3, with high expression of DHCR24, CYP17A1,
and GSTAI, while cluster 2 showed high expression of WFIKKNZ2,
GSTM5, and IGFBP5 (DES in data S3). Future studies will need dens-
er sampling and more detailed local phenotyping to fully understand
the functional changes that accompany follicle development in vari-
ous regions of the medulla and cortex.
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Our scRNA-seq data revealed four major cell types, which are
mostly in agreement with those reported by two previous studies. In
one, Fan et al. (13) analyzed 20,676 cells isolated from antral follicles
from five donors undergoing fertility preservation before anticancer
treatment and identified five major types: Th/S, granulosa (G), im-
mune (Imm), endothelial (E), or smooth muscle (SmMusc) (13). On
the basis of comparative analyses in fig. S6 (A and B) and the top
marker genes reported for each cluster, their Th/S clusters likely
matched our stromal cells (TCF21, DCN, LUM, IGFBP5, and APOE).
Three of their immune clusters corresponded to our NK cells (GNLY,
KLRD1I, and CTSW), T cells (CD3D and CXCR4), and macrophages
(fig. S6H), respectively. Their endothelial clusters mapped to our en-
dothelial cells (VWF, A2M, and CLDN?5), while their smooth muscle
clusters corresponded to our pericytes (RGS5, ACTA2, and TAGLN),
as also seen in fig. S6C. We did not enrich for rare follicular cells
through follicle resection or marker-guided enrichment, and as a re-
sult, we did not identify granulosa and theca cell clusters. However,
the granulosa- and theca-enriched ROIs from our spatial analysis
emerged as distinct clusters, and they correlated specifically with the
Th/S and granulosa clusters, respectively, from the Fan et al. (13)
study. In a second study, Wagner et al. (9) profiled 12,160 cells isolated
from the ovarian cortex of four donors undergoing caesarean section
or gender reassignment surgery (9) and identified five types of so-
matic cells: immune, endothelial, granulosa, stromal, and smooth
muscle cells. They reported high expression of PDGFRA, DCN, CO-
L1AI, and COL6A1 in their stromal cells, which matched our stroma
cluster. Likewise, they reported high expression of MYH11, MCAM,
RGS5, and TAGLN in smooth muscle cells, which corresponded to
our pericytes. Their endothelial cells had high expression of VWF and
CDHS5, matching our endothelial cell cluster. These matches are also
seen in fig. S6 (C and D and E and F). For immune cells, they identi-
fied a coarse group of cells expressing markers for T cells (CD2,
CD3G, and CD8A) and antigen-presenting cells (CD14 and B2M),
while we identified four specific immune cell types. As explained
above, we did not find granulosa cells in our scRNA-seq data. Rather,
it was our spatial data that led to robust marker genes for each follicu-
lar cell type, which included canonical markers like FOXL2, AMH,
and INHBB for granulosa; CYP17A1, CYP11A1, and PTCH2 for the-
ca; and dozens of previously unreported markers (Fig. 3C and data
S5). By using our theca gene panels, we were able to suggest that a
subset of Th/S cells in Fan et al. (13) could have been theca cells
(fig. S6G), demonstrating how spatial data added value by comple-
menting scRNA-seq data.

The RNA markers reported for the oocyte, theca cells, and granu-
losa cells in the ovary are among the strongest contributions of this
study. While most of them await further in situ validation using RNA
and protein immunostaining, we expect them to validate well, as the
theca and granulosa ROI clusters are robust (Figs. 1, D and E and 3,
A and B) and consistent across samples (Figs. 2D and3C). To aid the
planning of such studies, we provided tiers of evidence based on
literature references and previous knowledge of gene function (data
S5). Some of these markers can be further developed into probes for
isolating specific cell population for in-depth experimentation, such
as being used to improve in vitro follicle culture or to promote the
differentiation and maturation of stem cell-derived oocytes, instead
of using fetal somatic cells (37, 38), or they can be used in the
isolation of steroidogenic cells expressing genes such as STAR and
CYP17A1 for hormone production in vitro. The markers may also be
used for higher-resolution spatial analysis and lineage tracing, or as
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targets of perturbation to understand the wide range of disorders
affecting the female reproductive system, such as female infertility,
ovarian aging, or somatic aberrations that lead to cancers.

While the three marker panels seem robust, the findings for the
cortex surface gradient (Fig. 4, A and B) and the gradient in the con-
centric rings around the oocyte (Fig. 3, D and E) are in need of replica-
tion in other samples and validation by in situ imaging. We acknowledge
this as a major limitation of the current study. Meanwhile, our experi-
ence also underscored the limitations of the current ST technologies.
For small functional units like the ovarian follicles, single-cell or even
subcellular resolution is needed to fully elucidate the local cross-talk
between the oocyte and its surrounding cell community. Highly multi-
plexed in situ imaging methods such as multiplexed error-robust fluo-
rescence in situ hybridization (MERFISH) can measure the distribution
of single RNA molecules for a few hundred RNA markers (39), and
our lists of oocyte-, theca-, and granulosa-specific genes are essential
and ideally suited for the optimal design of such gene panels. We ex-
pect that the rapidly improving resolution and multiplexity will soon
allow us to study all stages of oocyte development, from the smallest
primordial follicles to transitional and primary follicles and onward to
antral follicles, the corpus luteum, and other events in follicle matura-
tion and degeneration. The single-cell and spatial analyses we report
here serve as a key step toward these more powerful data series, which
are needed for understanding healthy ovarian function across the
female reproductive life span, as well as disorders such as polycystic
ovarian syndrome, premature ovarian aging, and ovarian cancers.

MATERIALS AND METHODS

Ethical approval process for cadaveric samples

This study used tissue samples from five deidentified deceased do-
nors procured through the International Institute for the Advance-
ment of Medicine (ITAM) and the associated Organ Procurement
Organization (OPO) involved in collection. The use of cadaveric
tissue in this research is categorized as “not regulated,” per 45 CFR
46.102 and the “Common Rule,” as it does not involve human sub-
jects, and complies with the University of Michigan’s Institutional
Review Board requirements as such.

Ovarian donor tissue processing

All five donors were premenopausal, and examination of provided
medical records indicated no pathological conditions affecting ovarian
function (for their age, body mass index, recorded “race,” and cold
ischemic time; see fig. S1A). Before cross-clamp, the organs were per-
fused with Belzer University of Wisconsin Cold Storage Solution
(Bridge of Life, SC, USA), Custodiol HTK (Histidine-Tryptophan-
Ketoglutarate) Solution (Essential Pharmaceuticals, NC, USA), or
SPS-1 Static Preservation Solution (Organ Recover Systems, IL, USA).

GeoMx ST experiments

Slide preparation and ROl sample collection

The cross sections of fresh ovarian tissue from donors 1 and 2 were
resected from the central region of the organ along the short axis and
then fixed in 4% paraformaldehyde (Fisher Scientific) for 24 hours at
4°C and rinsed five times for 24 hours each in Dulbeccos phosphate-
buffered saline without calcium or magnesium (DPBS_/_) at4°C. The
tissue was then embedded in paraffin for sectioning. Every other
5-pm section was stained with hematoxylin and eosin (H&E; Fisher
Scientific) to select an unstained slide for spatial analysis. The selected
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slides from donors 1 and 2 were deparaffinized and rehydrated, fol-
lowed by antigen retrieval for 15 min at 90°C in tris-EDTA (Fisher
Scientific). RNA targets were exposed using proteinase K (1 pg/ml) in
PBS for 15 min at 37°C. For in situ hybridization, GeoMx reagents
and protocols were used according to the manufacturer’s instructions.
The slide was stained with morphology markers before RNA collec-
tion. For donor 1, we used SYTO82 (a nuclei marker, Thermo Fisher
Scientific, USA) and three protein markers: anti-smooth muscle actin
to visualize pericytes and smooth muscle cells (SMA; a-smooth mus-
cle actin monoclonal antibody conjugated to Alexa Fluor 488, Ther-
mo Fisher Scientific, USA), anti-Ki67 to visualize proliferating cells
(rabbit monoclonal 9027S, Cell Signaling Technology, USA), and
anti-CD68 (sc-20060 AF594, Santa Cruz Biotechnology, USA). For
donor 2, we again used SYTO82 and anti-CD68, along with anti-
DAZL to visualize oocytes (MCA2336, Bio-Rad, USA) and anti-PGR
to visualize cells expressing PGR such as luteinized follicular cells
(ab63605, Abcam, USA).

NanoString library preparation and sequencing

The prepared slide was covered with Buffer S (NanoString, USA) and
loaded into the NanoString GeoMx DSP instrument, which uses
digital images of a slide-mounted tissue section, with up to four fluo-
rescently labeled markers, to guide the selection of ROIs. ROIs are
defined by the user based on cell morphology and related tissue fea-
tures, using the “polygon,” “contour,” and “segmentation” tools pro-
vided in GeoMx DSP. Target enrichment ROIs were segmented into
AOIs based on staining for CD68, Ki67, SMA, DAZL, and PGR. To
collect concentric ROIs from ovarian follicles, a mask was designed
in Image] (40) and imposed on the follicle’s region in the tissue.

In this experiment, RNA molecules are affixed by photocleavable
linkers; then, programmable ultraviolet light is used to release RNA
from each ROI. RNA samples are collected by microcapillary aspira-
tion into microtiter wells for sequencing-based analysis. In some
cases, the selection was aided by histological images of one or both
of the flanking tissue sections, which were not used for sample col-
lection. Some of the ROIs are serial subdivisions of the same mor-
phological area to capture local spatial changes. Some of the ROIs
produced two to three AOIs/samples each due to targeted enrich-
ment using one or two of the protein markers. Each sample is associ-
ated with additional information about its location, surface area
(um?), and number of nuclei (an estimate of cell number) (data S1).
NanoString statistical analysis
We used the GeoMx analysis software to process the NanoString data,
including steps for read decoding, trimming, and deduplication, and
obtained the gene-by-sample read count data for 18,676 genes pass-
ing GeoMx’s default quality control (QC) criteria. This is after remov-
ing gene #1309, “NegProbe-WTX,” from the original data matrix. For
donor 1, we initially collected 94 samples; however, two yielded fewer
than 100,000 reads and were removed, leaving 92 samples, which
came from 74 ROIs. They represent 14 “ROI types,” as described in
Fig. 1F and data S1. The 92 samples had library size (i.e., total read
count) ranging from 146,463 to 4,464,464 (mean = 805,579), surface
area ranging from 7619 to 359,037 pm® (mean = 60,591 pm?), and
nuclei counts ranging from 0 to 2544 (mean = 424) (data S1). Raw
counts, which were already floored at 1 rather than 0 by NanoString,
were normalized into counts per million (CPM), then log-transformed
with base 2, and quantile-normalized. These 92-sample normalized
data were used in the analyses shown in Fig. 3A. For all other analyses
presented, we condensed the target-enriched AOIs from the same
ROI into a single sample by summing up the reads over the AOIs,
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leading to the reduction of 29 AOIs to 11 ROIs, and the total sample
number from 92 to 74. These 74 samples were similarly normalized to
CPM, log,-transformed, quantile-normalized, and subjected to PCA
and k-means clustering (k = 6) shown in Fig. 1D. We also observed
that ROIs collected using an anti-Ki67 antibody (intended to target
proliferating cells) showed poor antibody localization and low ROI
expression of Ki67.

For donor 2, the 165 samples from 147 ROIs were normalized to
CPM, log,-transformed, and quantile-normalized, with PCA and k-
means clustering (k = 9) shown in Fig. 1E and figs. S1E, S2B, and
S4B. The 165 samples from donor 2 had library sizes ranging from
24,862 to 3,404,417 (mean = 506,800), surface area ranging from 577
to 113,205 pm* (mean = 30,152 pm?), and nuclei counts ranging
from 0 to 1497 (mean = 240) (data S1). ROI selection for donor 2
covered 12 ROI types, including 7 of the 14 ROI types analyzed in
donor 1 and 5 additional ROI types, bringing the total to 19.

While the analyses were based on NanoString’s floor = 1 raw
counts data, we examined an alternative method: minus 1 on all
counts data, recalculate CPM, and then obtain log,(CPM + 1). We
found that the difference is minor in terms of the PCA projection of
the 92 sample; thus, we opted to stay with the log,(CPM) method on
the original, floor = 1 data. The quantile-normalized data for 74 ROI-
based samples for donor 1 and the 165 AOI-based samples for donor
2 were shown in Figs. 2D and3C for the marker genes for oocyte,
theca cells, and granulosa cells, as discussed in the main text. These
quantile-normalized data were also used in PCA for subsets of sam-
ples, shown in Figs. 3B and4D and fig. S4 (B to D). For Figs. 2D and3C,
the expression values for each gene were standardized for the 74
donor 1 samples and the 165 donor 2 samples separately, and shown
in the heatmaps with a symmetrical, blue-to-red color palette.
Here, “standardized” means centering by the mean and scaling
by the SD.

Cluster analysis of NanoString data

For donor 1, PCI-PC2 in Fig. 1D revealed the separation of five
clusters (C1 to C5). The sole oocyte sample separated itself in PC3
(fig. S1C) and was designated cluster 6 (C6). For donor 2, clustering
was performed on all 165 samples (without consolidation of target-
enriched samples) to highlight the unique signature of primordial/
primary oocytes (ROI type #4) captured by DAZL, with k-means
clustering (k = 9) shown in Fig. 1E. Centroid data, using the post-
log transformation and quantile normalization data, for the six clus-
ters from donor 1 and the nine clusters from donor 2, are included
in data S2.

DE analysis

We performed 17 series of DE analysis for donor 1 using the
quantile-normalized log,(CPM) data for 74 ROIs. Each DE analysis
compares two groups of ROIs, as described below, and produced
four statistics: fold change (FC), ¢ score, raw P value, and adjusted P
value, i.e., the Benjamini-Hochberg FDR (all provided in data S3).
FC is reported on the log, scale, and the t score is from ¢ test without
assuming equal variance in the two groups being compared.

The 17 DE series for donor 1 are for comparing samples in each
cluster with those in all other clusters (cluster1vsAll, cluster2vsAll,
cluster3vsAll, cluster4vsAll, and cluster5vsAll), comparing one clus-
ter with its “adjacent” cluster (clusterlvs2, cluster2vs3, cluster3vs4,
and cluster4vs5), and comparing target-enriched areas against their
matched unenriched AOTs using paired t test: SMA (SMA™ areas
against their matched, untargeted area), CD68 (CD68" areas against
their matched, untargeted area), Ki67 (Ki67* areas against their
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matched, untargeted area), gradient in the cortex surface (linear
regression across the 11 consecutive cortex surface layers, Fig. 4B),
in Ring34 (regression across the four consecutive cumulus cell rings
around antral follicle 1, shown in Fig. 3, D and E), Ring52 (regres-
sion across the five consecutive rings around the secondary follicle),
cluster6vsAll (only FC, as there is only one sample in cluster 6), and
cluster5vs6 (only FC). The five sets of one-cluster-versus-all-other
comparison (such as clusterlvsAll) are based on the 73 ROIs with-
out using the oocyte sample. Positive FC and ¢ score values indicate
that the expression is higher in this one cluster. In the four sets of
one-cluster-versus-the-adjacent comparison (such as clusterlvs2),
positive FC and t score values indicate that the expression is higher
in the second higher numbered cluster. The three DE results for tar-
geted AOIs are based on paired ¢ tests for SMA (eight pairs), CD68
(three pairs), and Ki67 (seven pairs). Positive values mean higher
expression in the enriched AOIs. This analysis relied on the 29 tar-
geted samples from the 11 ROIs, using quantile normalization
among the 29 rather than the quantile-normalized data across the
entire set of 92 or 74 samples. In the cortex layer gradient analysis,
positive values mean higher expression toward the surface. FC is the
fitted slope over the series of layer numbers, 1 to 11. Since all FCs are
in the log, scale, a slope of 1/11 means an FC of 0.0909 per layer, or
an FC of 1.0 overall, or twofold increase after 11 layers, spanning
about 330 pm. In antral follicle 2, the oocyte is not present in the
sampled section, although it is discernible in the H&E image of the
adjacent section. For the regression result of the gradient across
the four rings in “Ring34” and five rings in “Ring52,” positive values
mean higher expression toward the outside of the follicle. FC is the
slope in the unit of per-ring. For instance, in ring34, an FC of one of
four would mean an FC of one overall, or twofold change between
the first and the fourth ring. Note that the center ROI of follicle, for
both ring34 and ring52, was not used in the regression.

For donor 2, we performed 12 series of DE analysis using the
quantile-normalized log,(CPM) data for all 165 ROIs. Each DE
analysis compares two groups of ROIs, as described below, and pro-
duced the same four statistics: FC, ¢ score, P value, and FDR-adjusted
P value, which are all provided in data S3. The 12 DE series are as
follows: cumulus versus non-cumulus granulosa (ROI type #13 ver-
sus type #12, denoted d13.12), theca versus granulosa (ROI type #14
versus types #12 and #13, denoted d14.1312), oocyte versus other
(ROI type #4, n = 11, versus the other 154 ROIs, denoted oocyte.
other), medulla versus similar cortex (cluster 5, n = 38, versus clus-
ter 2, n = 28, denoted d5.2), granulosa versus other (ROI types #12
and #13, n = 18, versus all other ROIs minus the 11 samples for
primordial and primary oocytes, n = 136, designed to be compara-
ble to donor 1 granulosa DE results, denoted gc.other), theca versus
other (ROI type #14, n = 7, versus all other ROIs minus primordial
and primary oocytes, n = 118, designed to be comparable to donor
1 theca DE results, denoted tc.other), ovarian cyst versus other cor-
tex (cluster 3, for ovarian cyst, n = 21 versus cluster 1, n = 16, de-
noted d3.1), within-cortex comparison (cluster 2 cortex samples,
n = 28, versus clusters 1 and 3, n = 37, denoted d2.13), CD68-
enriched (n = 6) versus all other ROIs minus primordial and pri-
mary oocytes (n = 130) (designed to be comparable to donor 1
CD68-enriched DE results, denoted cd68.other), medulla versus
proximal cortex (cluster 5 medulla samples, n = 38, versus cluster 1
and 3 cortex samples, n = 37, denoted d5.13), medulla versus all
cortex (cluster 5 medulla samples, n = 38, versus cluster 1 to 3 cortex
samples, n = 65, denoted d5.123), and follicle rich versus follicle null
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(the nine DAZL™ AOIs versus surface-most samples from the three
cortex series, ROIs #61, #67, and #95, denoted richvnull, shown in
Fig. 4E).

Pathway analysis of DE results

We used LRpath (48) to examine the enrichment pattern of Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology
(GO) terms in each of the DE results. We converted gene symbols to
Entrez IDs and uploaded the P value (for ranking significance) and
FC (for direction of change) as input data. We selected “directional
analysis” to separate enrichment signals for up- and down-regulation.
For all 8423 GO and KEGG terms and each DE series, we collected
odds ratio (OR) of enrichment, P value, and FDR. When OR > 1, the
genes in this pathway are enriched among those with positive ¢ scores
in the gene-level analysis. For the two DE analyses involving donor 1
cluster 6, since there is only one oocyte sample and only FC (with ¢
score or P value), we created a mock P value based on FC so that both
significance rank and direction are available in the input file. All re-
sults are provided in data S4. For some of the comparisons, we only
evaluated pathways with positive t scores (OR > 1), as the other di-
rection is the “background” (e.g., one cluster versus all other). Note
that pathway terms with too few genes tend to be noisy and have less
significant P values. Those with too many genes tend to have signifi-
cant P values even when the enrichment ratio is moderate.
Identification of marker genes for oocyte, theca cells, and
granulosa cells

The 76 oocyte marker genes (Fig. 3D) came from the oocyte versus
other FC > 2. The 45 theca cell marker genes (Fig. 4C) came from
theca versus granulosa FC > 1.2 and theca versus other FC > 1, mi-
nus one gene that also appeared in the 76 oocyte markers. The 94
granulosa cell marker genes (Fig. 4C) came from theca versus gran-
ulosa FC < (—1) and granulosa versus other FC > 1.5, minus two
genes that also appeared in the 76 oocyte markers.

scRNA-seq experiments using 10X Chromium

Tissue dissociation, cell sorting, and sequencing

data collection

We collected scRNA-seq data from three additional donors (fig. S1A).
Upon arrival, ovarian tissue (cortex and medulla) from donors 3 to 5
was chopped into ~1-mm cubes at room temperature in Quinn’s Ad-
vantage Medium with Hepes (CooperSurgical, Denmark) with 10%
Quinn’s Advantage Serum Protein Substitute (CooperSurgical). These
tissue cubes were rinsed twice with DPBS™~ (Fisher Scientific, USA)
and then transferred to a digestion solution containing collagenase IA
(0.5 mg/ml; Sigma-Aldrich, Germany) and deoxyribonuclease I (0.01
mg/ml; Worthington Biochemical, USA) in DPBS with calcium and
magnesium (DPBS'', Fisher Scientific). Tissue was transferred to a
shaker of 150 rpm to digest for 30 min at 37°C, and then the tissue
was strained through a 70-pm strainer (Fisher Scientific), followed by
a30-pm strainer (PluriSelect, USA). The cell suspension was quenched
with ice-cold 10% fetal bovine serum (Fisher Scientific) in DPBS ™.
The remaining tissue with undissociated cells was placed in fresh
digestion solution and shaken for an additional 30 min before straining
and quenching. Cell suspensions were stored on ice and treated with
red blood cell lysis buffer (BioLegend, USA) according to the manufac-
turer’s instructions. Suspensions were then rinsed in 1% bovine serum
albumin (BSA; Fisher Scientific) in DPBS ™~ followed by 0.04% BSA in
DPBS ™'~ to remove debris. Cells were pelleted at 100g for 5 min be-
tween all rinsing steps. Cortex and medulla were enzymatically digested
separately and then combined into a single-cell suspension at a 1:1 ratio.
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Combined cortex/medulla single-cell suspensions from tissue dissoci-
ation were incubated with 3 pM 4',6-diamidino-2-phenylindole, dihy-
drochloride (DAPI; Fisher Scientific) per 1 million cells for 30 min on
ice in preparation for fluorescence-activated cell sorting (FACS) at the
University of Michigan’s Flow Cytometry Core. Cells were sorted on
a MoFlow Astrios (Beckman Coulter, USA) to remove dead cells
(DAPI") and collect live cells (DAPI™). Flow]Jo v10 software was used
for gating and cell counting. We performed three runs of scRNA-seq
using dissociated cells from donors 3, 4, and 5, respectively, thus creat-
ing three experimental batches. Freshly sorted cells were submitted to
the Advanced Genomics Core at the University of Michigan, loaded
to the 10X Genomics Chromium controller for droplet-based single-
cell capture. Cell lysis and RNA-seq library preparation used the Chro-
mium Next GEM Single Cell 3’ LT Kit according to the manufacturer’s
instructions. Libraries were sequenced on NovaSeq F0 using an S4 flow
cell. The Core performed basic QC and read alignment using standard
procedures, and provided unique molecular identifier (UMI) counts
data in a cell-by-gene matrix for each sample.

Statistical analysis

ScRNA data from the three donors were initially processed by the
Univerisity of Michigan Advanced Genomics Core using Cell Rang-
er v4.0.0. The main steps include the extraction of cell barcodes and
the UMIs from the raw paired-end sequencing reads, alignment to
human Ensembl genes, and UMI-based deduplication, leading to a
cell-by-gene UMI count table, represented by the “filtered_feature_
bc_matrix” for 14,322, 13,901, and 9149 cells for the three samples,
respectively, for 20,886 genes.

Downstream analysis used a combination of Seurat and custom
codes in R. Cell filtering used (i) minimal number of UMI (called
“nCount” in Seurat) and (ii) % of transcripts corresponding to
mitochondria-encoded genes (“% MT”). The cutoff values varied for
the three samples: nCount: 2300, 1275, and 1096; % MT: 15, 12, and
15, respectively. The cutoffs were chosen on the basis of each sam-
ple’s distribution of nCount and % MT (not shown). After filtering,
there are 7571, 7228, and 6339 cells left for further analysis. The av-
erage of nCount, number of genes detected (“nFeature”), and % MT
for these cells are shown in fig. S1A.

Identification of major cell types

We normalized the counts data to CPM and analyzed thelog,(CPM + 1)
data for the three donors separately. Initial analyses showed that donor
5 contained the greatest proportion of nonstromal cells, and we ana-
lyzed this donor’s 6339 cells first. We selected 2034 genes of high ex-
pression and high variability for PCA and used the top 50 PCs for
k-means cluster (k = 14) and t-SNE projection (Fig. 5A). The 14 clus-
ters can be merged to five main clusters (Fig. 5A), corresponding to
stroma cells, two apparent subtypes of immune cells, pericyte, and en-
dothelial cells, as annotated by marker gene expression (Fig. 5, C and
D). Of the 6339 cells, 5399 (85.2%) were stromal cells.

For donors 3 and 4, since the stromal cells dominated more
strongly than in donor 5, k-means clustering could not readily sepa-
rate the nonstromal cells, although they appeared in distinct clusters
in t-SNE (fig. S5, A and B). We used the centroids of the five main cell
types in donor 5 to perform supervised annotation for cells in donors
3 and 4 (i.e., a cell is assigned to a cell type by the maximal correlation
among the five centroids), with the resulting cell label shown in
fig. S5 (A and B). For donors 3 and 4, the analyses proceeded by the
selection of 3702 and 2251 genes, respectively, that were highly ex-
pressed and highly variable, followed by PCA and ¢-SNE projection
using the top 50 PCs. After supervised cell annotation, 7438 of the
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7571 cells (98.2%) in donor 3, and 7052 of the 7228 cells (97.6%) in
donor 4, were stromal cells. Marker genes shown in Fig. 5D came
from a series of DE analyses comparing one cell type against the
other, as was done for the immune cell types described below.
Identification of fourimmune cell types

For immune cells, we combined the 59, 133, and 671 immune
cells from donors 3, 4, and 5, respectively, and reran PCA for
these 863 cells. Uniform Manifold Approximation and Projection
(UMAP) projection using the top 20 PCs revealed four immune cell
subtypes (Fig. 5B). Marker-based annotation (Fig. 5, C and D) iden-
tified them as NK cells (n = 105), T cells (n = 409), macrophage
(n=319), and mast cells (n = 30).

Lack of heterogeneity among stromal cells

We attempted to identify subtypes of stromal cells or gradients among
them that could reflect shifting regulatory states. We observed that
the stromal cells in our datasets were notably uniform in their expres-
sion profile. The donor-to-donor variation (i.e., the “batch effect”),
while not a prominent factor in the identification of major cell types
or immune cell subtypes (as shown in Fig. 5), became dominant
when characterizing the variation among stromal cells. Further, slight
changes in gene selection, or in the algorithm dealing with the
0-counts (e.g., using CPM or CPK—counts per thousand), markedly
altered PCA, subsequent UMAP or ¢-SNE projection, or the k-
means clustering results. Most projections and clustering solutions
were driven by the cells’ “library size;” hence by their length of 0- and
1-counts, suggesting that there is no discernible heterogeneity among
the stromal cells.

For instance, among the 5399 stromal cells in donor 5, we se-
lected 4881 cells of the largest library size and then selected 3473
most highly expressed genes for use in PCA and in t-SNE projection
using the top 50 PCs. In parallel, we reran quantile normalization
using the 4881-by-3473 data and subsequent PCA and #-SNE. In the
third option, we “imputed” 0 CPM values in each sample with the
half of the minimal nonzero CPM value, calculated CPM again, and
ran quantile normalization of log,(new-CPM), followed by PCA
and UMAP and ¢-SNE projections. In additional tries, we ran analy-
sis on a more stringent set of 2122 cells and repeated the procedure
on donor 3 and 4 stromal cells with multiple selections of the stron-
gest cells and strongest genes. In all case, the projections failed to
reveal separate groups of cells (not shown), and the persistent uni-
modal distribution was driven by gradients of library size.

In an alternative, supervised approach, we took advantage of
the robust gene sets from the NanoString data for oocytes, theca
cells, and granulosa cells (Figs. 2D and3C) to calculate an oocyte
score, a theca score, and a granulosa score for each stromal cell.
This is essentially an attempt to identify the rare subsets of stromal
cells that could have been oocytes or theca or granulosa cells that
were difficult to uncover using unsupervised approaches. For each
cell, we summed the expression values over the 76 oocyte marker
genes, 45 theca markers, and 94 granulosa markers, in either the
linear CPM space or the log(CPM + 1) space (or CPM imputed
with half-minimal values), with or without normalizing each cell’s
score by its library size, in either the linear or the log space. Of all
the combinatorial options of constructing such scores, a few
showed that some cells seemed to have a theca-like character and
were near each other in UMAP, and some of them also showed a
granulosa-like character. An example is shown in fig. S5B. However,
they do not appear as a distinct subtype of stromal cells. There is
no evidence that cells at the periphery of the UMAP projection
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were hybrid cells with nonstromal cells (using markers for major
cell types; not shown).

Comparisons with previous single-cell studies

We downloaded the scRNA-seq data from Fan et al. (13) and used
Seurat to generate cell type centroids and #-SNE projection shown in
fig. S6G. The centroid-centroid correlations in fig. S6A were calcu-
lated using 442 genes, which is the overlap between 2000 highly
variable genes (HVGs) in our data and the 2000 HVGs in Fan et al.
(13). The centroid-centroid correlations with Wagner et al. (9) data
(fig. S6C) used 469 genes that overlapped between 2000 HVGs in
our data and 2000 HVGs in the Wagner study. Marker gene expres-
sion in fig. S6 (B and D) used gene lists from data S5 and ordered in
the same way, with each gene’s values centered by mean and scaled
by SD across the centroids in the Fan data and the Wagner data. The
correlations shown in fig. S6E are Spearman’s correlation coefficients
using all 15,510 genes that overlapped between the Fan study and
our study, while those in fig. S6F are Spearman’s correlation coeffi-
cients using 1907 genes, which is the overlap of our 2000 HVGs and
all genes in the Wagner study. Cluster labels in fig. S6G (left) were
downloaded from Fan et al. (13). The theca score for the cells in the
Fan study (fig. S6G, right) is calculated as the sum of log(CPM + 1)
values over the 45 theca marker genes. Correlations in fig. S6H used
our 2000 HVGs within the immune cells, reduced to 426 genes by
overlapping with Fan’s 2000 HVGs.
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