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Cellular atlas of the human ovary using morphologically 
guided spatial transcriptomics and single-cell sequencing
Andrea S. K. Jones1†, D. Ford Hannum2†, Jordan H. Machlin1,3, Ansen Tan1, Qianyi Ma2,4,  
Nicole D. Ulrich4, Yu-chi Shen5, Maria Ciarelli1, Vasantha Padmanabhan4,6,7, Erica E. Marsh4,  
Sue Hammoud3,4,5,8, Jun Z. Li2,4*, Ariella Shikanov1,3,4*

The reproductive and endocrine functions of the ovary involve spatially defined interactions among specialized 
cell populations. Despite the ovary’s importance in fertility and endocrine health, functional attributes of ovarian 
cells are largely uncharacterized. Here, we profiled >18,000 genes in 257 regions from the ovaries of two pre-
menopausal donors to examine the functional units in the ovary. We also generated single-cell RNA sequencing 
data for 21,198 cells from three additional donors and identified four major cell types and four immune cell sub-
types. Custom selection of sampling areas revealed distinct gene activities for oocytes, theca, and granulosa cells. 
These data contributed panels of oocyte-, theca-, and granulosa-specific genes, thus expanding the knowledge of 
molecular programs driving follicle development. Serial samples around oocytes and across the cortex and me-
dulla uncovered previously unappreciated variation of hormone and extracellular matrix remodeling activities. 
This combined spatial and single-cell atlas serves as a resource for future studies of rare cells and pathological 
states in the ovary.

INTRODUCTION
The development, differentiation, and spatial organization of the 
many cell populations in the human ovary are essential for its repro-
ductive and endocrine functions. The outer ~1.5-mm layer of the or-
gan, the ovarian cortex, contains quiescent primordial follicles, which 
constitute the follicular reserve, and transitioning and primary folli-
cles and is identified by its dense tissue structure and lesser vascula-
ture (1, 2). The inner part of the organ, the medulla, contains the 
growing secondary and antral follicles, as well as corpora lutea, pres-
ents with a looser extracellular matrix (ECM) structure, and contains 
more abundant vasculature (2, 3). Both regions are maintained by 
constant interactions among the stromal, immune, and endothelial 
cells and other rarer cell types (4). The functional unit of the ovary, the 
ovarian follicle, contains an oocyte in the center, surrounded by spe-
cialized somatic cells that secrete hormones and support the many 
steps of oocyte maturation (5). In women of reproductive age, a small 
portion of quiescent primordial follicles are periodically activated to 
join the pool of growing follicles (6). The growing follicles expand 
across both the cortex and medulla, each taking on a multilayered 
three-dimensional architecture containing the oocyte surrounded by 
cumulus granulosa, and outer layers of mural granulosa, and theca 
cells, which are separated from the cumulus-oocyte complex by a 
fluid-filled antrum (7). Paracrine cross-talk among the follicular cells 
and endocrine signals from the hypothalamic-pituitary-ovarian axis 
work together to trigger ovulation, which produces mature eggs for 

fertilization (5). The cellular diversity of the ovary and the complex 
spatially defined structures in growing follicles have been difficult to 
study, largely due to the scarcity of tissue from healthy women of re-
productive age, the lack of unbiased functional profiling, and the tech-
nical limitations of spatial transcriptomics (ST). Past studies using 
animal models have identified major classes of ovarian structures and 
their putative functions using transcriptomics (4, 8). However, human 
follicle development and the role of nonfollicular cells in this process 
remain poorly understood, supporting an ST-based characterization 
of the human ovary to understand follicle development, hormone 
production, and ovarian aging.

The ovarian cortex is of particular research interest as the home 
of the follicular reserve and the microenvironment in which follicle 
activation occurs. In recent years, a few single-cell sequencing studies 
have reported that the cortex and the medulla contain the same 
general cell types (9), but the two regions are histologically distinct, 
e.g., having different ECMs tailored to their functions and different 
gradients of growth factors (10). The mechanisms driving follicle 
activation, either within the follicular structure or from the micro-
environment outside the follicles, are poorly understood. Studies of 
the oocyte compartment of primordial and primary follicles have 
aimed to identify markers of quiescence and activation, but isola-
tion of oocytes for sequencing may alter their transcriptome or lead 
to spontaneous activation (11, 12), underscoring the need to collect 
data from intact tissues to understand what defines these early stages 
of follicle development. With the recently emerged ST technology, 
primordial and primary follicles and the surrounding cortical stro-
ma can be sampled with minimal perturbation to uncover cortex-
specific gene activities related to early folliculogenesis. Likewise, 
ST presents a previously unattainable opportunity to profile the 
gene activities in diverse types of follicles recognized by their mor-
phology and spatial context. Previous studies have reported on the 
transcriptional profiles of granulosa and theca cells (9, 13), but 
hypotheses surrounding oocyte-cumulus granulosa cell bidirectional 
cross-talk and factors influencing the follicular cell phenotypes have 
not been validated using a spatial approach.
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In this study, we compiled a functionally targeted ST dataset of 
the human ovary, composed of 257 regional samples collected using 
NanoString’s GeoMx platform from the ovaries of two reproductive-
age, premenopausal donors. We also collected single-cell RNA se-
quencing (scRNA-seq) data of 21,198 dissociated cells from three 
additional donors. Using these data, we uncovered transcriptional 
profiles of primordial and primary oocytes sampled from their na-
tive microenvironment, gene signatures of theca and granulosa cells, 
spatially defined patterns of gene expression across the medulla and 
cortex, and major stromal and immune cell types of the human ova-
ry. Comparisons between our ST and scRNA-seq datasets confirmed 
the robustness of the GeoMx platform for sampling specific local re-
gions of small size and distinct function. This integrated analysis led 
to a comprehensive cell atlas of the healthy reproductive-age human 
ovary, revealing spatially defined transcriptional patterns and adding 
to our knowledge on the cellular diversity of this organ.

RESULTS
ST of the human ovary
We used the GeoMx technology to analyze samples from 74 regions 
of interest (ROIs) in a whole-ovary tissue cross section from a healthy 
donor, followed by samples from 147 ROIs collected from a second 
donor. The donors were postpubescent and premenopausal (18 and 
27 years old) and had no known reproductive disorders (for complete 
donor information, see fig. S1A). The ROIs were manually selected on 
the basis of histological features in different tissue locations to repre-
sent known functional units in the ovary (Fig. 1A). The 92 samples in 
donor 1 represented 14 ROI types, and the sampling in donor 2 was 
designed to repeat and validate some functional types while extend-
ing to additional types based on the analysis of donor 1 data and 
structures uniquely present in the donor 2 ovary. In all, we analyzed 
19 prespecified ROI types (see additional details in fig. S1B and Mate-
rials and Methods). Some ROIs produced multiple split samples from 
the use of antibody-guided collection from subregions within the ROI 
[called areas of interest (AOIs)], leading to 92 and 165 samples, re-
spectively, from the two donors. A brief description of the ROI types 
is as follows. Types 1 to 5 represent regions in the ovarian cortex: ovar-
ian surface, cortex, cortex layers, primordial/primary follicles, and 
primary follicle rings (Fig. 1A). Types 6 to 9 represent regions in the 
medulla: medulla, follicle-adjacent medulla, medulla cross section, 
and vascular regions. Types 10 to 14 were sampled from growing 
ovarian follicles (Fig. 1, B and C): secondary follicle, oocyte from an 
antral follicle, cumulus granulosa, mural granulosa (referred to from 
now on as granulosa), and theca (Fig. 1A). Types 15 to 16 were sam-
pled from an ovarian cyst in donor 2: cyst inner layer and cyst outer 
layer (Fig.  1, A and C). The remaining types were sampled using 
antibody-guided selection of AOIs enriched for specific cell types: 
CD68+ (type 17) for macrophages, SMA+ (type 18) for myofibroblasts 
and smooth muscle cells, and PGR+ (type 19) to identify cells express-
ing progesterone receptor (PGR) (Fig. 1A).

The ROIs adopted different sizes and shapes and varied by cell 
counts and sequencing depth. For example, the 74 ROIs from donor 
1 covered an average area of ~60,000 μm2 (range: 7619 to 359,038 μm2), 
contained a monolayer of ~400 cells (range: 0 to 2544, based on 
nuclei counts), and yielded ~806,000 identified transcripts (range: 
57,018 to 14,388,977) among the 18,676 unique protein-coding 
genes analyzed by the GeoMx Human Whole Transcriptome Atlas 
panel. Likewise, the 147 ROIs from donor 2 covered an average area 

of ~30,000 μm2 (range: 576 to 113,204 μm2), contained an average of 
240 cells (range: 0 to 1497), and yielded an average of ~507,000 tran-
scripts (range: 24,863 to 3,404,489).

Cluster analysis of the 74 ROI-based samples in donor 1 and the 
165 AOI-based samples in donor 2 (Materials and Methods) re-
vealed six and nine clusters, respectively (Fig. 1, D and E). Notably, 
although each region contained a mixture of a few hundred cells, 
their observed clusters mapped to the prerecognized functional 
types of ROIs from the cortex, medulla, and follicle-enriched sites 
and were consistent between the two donors (highlighted by color-
coded cross-tabulation in Fig. 1F). For example, cluster 1 in donor 1 
contained 21 of the 22 ROIs from the cortex (ROI types 1 to 4); 
clusters 2 and 3 corresponded to the five ROI types (6, 7, 9, 17, and 
18) from the cortex to the medulla (Fig. 1F). The ROIs enriched for 
theca cells and those enriched for cumulus granulosa (type 12) and 
granulosa cells (type 13) aggregated into well-separated cluster 4 
and cluster 5, respectively, in perfect consistency between the two 
independently sampled follicles (Fig. 1, D and F). The theca- and 
granulosa-enriched ROIs were spatially adjacent (Fig.  1B, insets); 
thus, the fact that their expression profiles were distinguishable (as 
clusters 4 and 5) confirms the location specificity of the technology. 
Cluster 6 is formed by the single ROI taken from the oocyte of an 
antral follicle (Fig.  1F), and it was clearly separated in principal 
component (PC) 3 (fig. S1C). Similarly, in donor 2, clusters 1 and 2 
corresponded to the surface regions of the cortex, while clusters 3, 4, 
5, and 6 mainly contained ROIs sampled from cortex and medulla to 
represent local characteristics, such as the ovarian cyst and antibody-
targeted subareas enriched for cells expressing cluster of differentia-
tion 68 (CD68) or PGR (Materials and Methods). Donor 2 data 
confirmed and extended these patterns. For example, ROIs intended 
to capture theca cells and granulosa cells arose in cluster analysis as 
distinguishable groups: cluster 7 for theca and cluster 8 for granu-
losa. Further, nine ROIs in donor 2 had a subarea expressing deleted 
in azoospermia like (DAZL) analyzed and they stood out as cluster 
9, along with two additional oocytes from primordial and primary 
follicles (Fig. 1, E and F). In short, although each of the locally sam-
pled regions contained a mixture of cells, we were able to reproduc-
ibly identify robust gene activity signatures for the oocytes (cluster 6 
in donor 1 and cluster 9 in donor 2), the theca cells (clusters 4 and 7 
in the two donors), and the granulosa cells (clusters 5 and 8), along 
with local characteristics in preselected ROI types across cortex and 
medulla. In the sections below, we will describe these findings in 
more detail.

Gene expression profile of primordial and primary oocytes
As described above, we profiled an oocyte sample from an antral fol-
licle in donor 1 and it had a distinct gene signature (as cluster 6). Since 
primordial and primary oocytes are too small to be individually de-
fined ROIs, we relied on an antibody against the oocyte-specific pro-
tein DAZL to target the oocyte subarea within each ROI (Materials 
and Methods; Fig. 2A), leading to nine pairs of DAZL+ and DAZL− 
samples. In each ROI, the DAZL+ subarea contains multiple primor-
dial or primary follicles. This allowed us to use the nine DAZL+ 
samples to represent oocytes in primordial and primary follicles, thus 
increasing the sample size of oocytes from 1 in donor 1 to 11 in donor 
2 (9 DAZL+ plus 2 individually collected primary follicles). The 
11 cluster 9 samples, when compared with the other 8 clusters, showed 
higher expression of previously reported oocyte markers, such as 
TUBB8, ZP3, LHX8, and OOSP2 (Fig.  2B) (1), and uncovered 
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Fig. 1. ST analysis of the human ovary. (A) An illustrated summary of ROI types (all diagrams created with biorender.com). We used the histological image of an adjacent 
whole-ovary tissue section to select ROIs to represent 19 functional types of local cell communities. (B) Hematoxylin and eosin (H&E) (top) and immunofluorescent (IF) 
images (bottom) of fixed tissue sections from donor 1. Left, whole tissue section. Right, zoomed-in view of an antral follicle. Gray, green, and yellow colors indicate SYTO82, 
SMA, and CD68 staining signals, respectively. Scale bars, 2.5 mm (left) and 200 μm (right). (C) H&E and IF images of fixed tissue sections from donor 2, in the same scale 
and layout as in (B), except that SMA was not used, and red indicates DAZL signal. Black arrow indicates ovarian cyst; white arrows indicate DAZL expression in primordial/
primary follicles. (D and E) PC plots (PC1 and PC2) of the 74 ROIs from donor 1 (D) and 165 ROIs from donor 2 (E), colored by the clusters identified. (F) Annotation of the 
observed clusters by their mapping to the predefined ROI types. Sample number cross-tabulation between the 19 ROI types (rows) and the 6 and 9 clusters (columns) in 
the two donors is shown. The major categories of ROI types and their mapped clusters are highlighted by color: orange, cortex; blue, medulla; yellow, theca; green, gran-
ulosa; purple, oocytes. **ROI segments sampled as DAZL+. *ROI segments without DAZL antibody localization.

D
ow

nloaded from
 https://w

w
w

.science.org on M
ay 16, 2024

http://biorender.com


Jones et al., Sci. Adv. 10, eadm7506 (2024)     5 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

4 of 17

previously unreported oocyte markers such as PADI6, UCHL1, ZFAN-
D2A, and REC114 (Fig. 2C). PADI6, which codes for a member of the 
peptidyl arginine deiminase family, localizes to cytoplasmic lattices in 
mouse oocytes and has been shown to be essential for early embryonic 
development (14–16) but has not previously been reported as oocyte-
specific among ovarian cells. Likewise, UCHL1 codes for a member of 

the ubiquitin C-terminal hydrolase family of proteins, whose activity 
contributes to fertilization and embryogenesis in mice (17). REC114 
codes for a protein involved in the programmed formation of DNA 
double-strand breaks during meiosis, but its functional importance for 
oogenesis has not been extensively characterized in mice or humans 
(18). Last, ZFAND2A codes for a protein involved in zinc ion binding 

Fig. 2. Transcriptional signature of human oocytes. (A) Process of antibody-guided sample collection from subareas of an ROI. In this example, after the sample in 
DAZL+ area (shown in orange) is collected by photo-activated cleavage, the sample in the remaining areas of the ROI (DAZL−, shown in purple) is collected in a second 
step, yielding a pair of samples from a single ROI. Created using biorender.com. (B) Expression pattern of four previously known canonical oocyte marker genes across the 
nine clusters in donor 2, where the y axis is log(CPM) for all panels. (C) Expression of four of previously unreported marker genes, where the y axis is log(CPM) for all panels. 
(D) Expression specificity of the 76 oocyte marker genes (in rows) compared across, from left to right, 74 samples from donor 1 ordered by the 6 clusters, and 165 samples 
from donor 2 ordered by the 9 clusters (data S5). Genes shown in (B) and (C), along with additional genes of interest, are indicated on the heatmap. Per-gene standardiza-
tion and color scale are explained in Materials and Methods.
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activity and, although not well characterized in humans, has been pre-
viously reported as up-regulated in human oocytes (19). These studies 
suggest that these genes may have biological importance for oocyte 
development, and here, we have shown their oocyte-specific expres-
sion compared to all other ROIs. The 11 cluster 9 samples from donor 
2 recapitulated the pattern seen in the cluster 6 sample from donor 1. 
In all, we identified 76 markers for human primordial and primary 
oocytes (Fig. 2D and data S5), many of which are involved in meiosis 
(HSP90A1, UBB, RALB, ESRP1, EIF4ENIF1, CDK7, and ZAR1). This 
data file also includes extensive annotations on each gene’s possible 
role in oocyte maturation and folliculogenesis and then orders genes 
into tiers based on these citations as an established marker, a previ-
ously unreported marker with documented biological relevance, a pre-
viously unreported marker with little biological relevance, a marker 
with poor literature annotation, or a marker with relatively poor statis-
tical significance.

Gene signatures of theca and granulosa cells
Among the 74 ROIs in donor 1, the 5 theca and the 11 granulosa 
ROIs separated into two clusters (clusters 4 and 5, respectively; Fig. 1, 
D and F). Focused principal components analysis (PCA) of these 
samples revealed a three-way separation that also distinguished the 
seven mural granulosa samples from the four cumulus granulosa 
samples (Fig. 3A). These distinct profiles were reproduced in donor 2 
(Fig. 1, E and F), where focused PCA separated the 9, 12, and 11 ROIs 
enriched for the theca, cumulus granulosa, and granulosa cells into 
three groups (Fig. 3B), although they were collected from two antral 
follicles. Differential expression (DE) analysis identified 96 granulosa-
specific genes and 45 theca-specific genes (Materials and Methods; 
Fig. 3C and data S5). The stark contrast in expression of these genes 
across the two cell types exemplifies their distinct functions. In addi-
tion, hundreds of other genes were high in both theca and granulosa 
cells, but not strongly different between them (data S2).

In donor 1, we also sampled a series of four cumulus granulosa 
ROIs, each 30 μm wide, corresponding to layers surrounding the oo-
cyte from an antral follicle (Fig. 3D), which was the single sample in 
cluster 6. We performed a regression analysis across the series of four 
ordered samples to identify potential gene expression changes in the 
vicinity of the oocyte. Moving outward from the oocyte, we observed 
increased expression of Wnt signaling genes (DDIT3, DKK1, LEF1, 
TLR3, and ZFP91) (Fig. 3E). Follicle-stimulating hormone (FSH)–
mediated down-regulation of this pathway in granulosa cells is im-
portant for progesterone production and cumulus cell expansion 
before ovulation (20). Conversely, there was increased expression of 
genes related to protein kinase A (PKA) signaling (AKAP12, MIF, 
RDX, and SPHKAP) moving inward to the oocyte. PKA signaling in 
granulosa cells has been well documented in the literature; it modu-
lates FSH-induced granulosa cell differentiation and oocyte matura-
tion as follicle development proceeds (21, 22).

Transcriptional gradient in the ovarian cortex and functional 
heterogeneity across cortex and medulla
To investigate transcriptome signatures in the outer surface of the 
ovarian cortex, we selected 11 consecutive regions, each 30 μm thick 
and 350 μm wide, covering the outer 0.33-mm layer of the donor 
1 tissue (Fig. 4A). Notably, although adjacent regions were only 
30 μm apart, the gene expression profiles of this linear sample series 
showed an 11-step, ordered transition (fig. S4A). Linear regression 
analysis by layer number revealed 313 genes with a significant [false 

discovery rate (FDR) < 0.05] depth-related expression gradient in the 
outer cortex (Fig. 4B and data S3). Genes with increasing expression 
moving inward from the surface epithelium included those in-
volved in hormone signaling (NR4A1, CEBPD, STAR, and AD-
AMTS4), insulin-like growth factor binding protein (IGFBP) signaling 
(IGFBP2, IGFBP3, IGFBP4, IGFBP6, and IGFBP7), and ECM remod-
eling (VIM, COL1A2, TIMP1, TIMP2, MMP2, COL8A1, COL12A1, 
COL14A1, COL16A1, and COL18A1) (Fig.  4B). Both NR4A1 and 
CEBPD encode transcription factors related to hormone synthesis. 
NR4A1 stimulates the expression of STAR and other genes involved in 
androgen production via the PKA pathway (23). Luteinizing hormone 
(LH) stimulates the expression of CEBPD, and the resulting transcrip-
tion factor, CCAAT/enhancer-binding protein δ, has been implicated 
in LH-triggered events in mature granulosa and theca cells (24, 25). 
These results show a high-resolution, spatially resolved gradient in the 
outer cortex, with progressively higher levels of hormone signaling 
when moving deeper into the cortex layers and more proximal to the 
growing follicles and the medulla.

To expand this approach when analyzing the donor 2 tissue, 
we sampled five linear series of consecutive regions: two “medul-
lary series” (M1 and M2) traversing the short and long axes of 
the tissue section, and three “cortex series” (C1 to C3) covering 
1.5 mm of the cortex (Fig.  4C). Each series contained 15 or 16 
consecutive straight-line samples. The cortex series started at the 
surface epithelium from three sides of the tissue section, with 
sample width of 150 μm and depth of 100 μm. The medulla series 
had the same width (150 μm) and depth of 500 μm, and they con-
nected with the cortex series at the end. In the overall clustering 
of all donor 2 samples, most of the ROIs from the three cortex 
series fell into clusters 1 (n = 16) and 2 (n = 20), which are cortex 
sample clusters, while a few others were mixed into other clusters, 
i.e., five in cluster 4, which “tracks” toward cluster 6—the CD68+ 
samples (Fig. 1E), and six in cluster 7—mainly containing theca 
samples (Fig. 1F). The medullary series were more homogeneous, 
with 28 of the 31 samples forming cluster 5, which also contained 
seven of the nine DAZL− samples surrounding primordial and 
primary follicles (Fig. 1F). Focused PCA of the five series and the 
nine DAZL− samples showed these patterns in more detail (PC1 
to PC3 in Fig. 4D and PC1 and PC2 in fig. S4B). Samples in each 
of the three cortex series covered a wide PC1 to PC3 space, yet 
they did not follow a linear gradient and did not clearly replicate 
each other (fig. S4C), reflecting diverse functional characteristics 
being sampled. For example, the cortex series drove clusters 1 and 
2, yet they came near cluster 3 (Fig. 1E), which had all 10 samples 
for ovarian cyst, along with 4 of 5 of PGR+ and 3 of 12 CD68+ 
samples (Fig.  1F). Other cortex samples may have been near 
blood vessels, regions of atresia, or medulla samples with high 
CD68 expression. In general, the three cortex and the two me-
dulla series are separable in PC3 (Fig. 4D), with one of the cortex 
series resembling the two medullary series in PC1 (fig.  S4B), 
while the nine DAZL− samples, which were from cortex regions 
dense with primordial and primary follicles (Fig. 2A), appeared to 
“bridge” the space between the cortex series and the medullary 
series (Fig. 4D). In sum, while the 11-sample series in the outer 
cortex of donor 1 showed a clean, linear gradient using 30-μm 
layers, the three cortex series of 1.5-mm tissue depth using 100-μm 
layers in donor 2 revealed more heterogeneity, and the two me-
dulla series showed a relatively homogeneous profile (cluster 5) 
for samples in the interior of the ovary.
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Fig. 3. Robust signatures of granulosa and theca cells. (A) Focused PCA of the 5 theca-enriched ROIs and 11 granulosa-enriched ROIs from donor 1, showing their 
separation into two clusters. (B) Similar PC plot for 6 theca and 18 granulosa ROI samples from donor 2. (C) Expression specificity of the 94 granulosa cell maker genes (top) 
and the 45 theca cell marker genes (bottom), compared across the 74 and 165 samples from the two donors, ordered by clusters in the same way as in Fig. 2D (data S5). 
Color scale explained in Materials and Methods. (D) Four concentric ring-shaped ROIs, for cumulus granulosa regions surrounding the oocyte in an antral follicle from 
donor 1 (scale bar, 100 μm). Purple denotes the oocyte in an antral follicle (“Oo”), while green denotes the four concentric rings of cumulus granulosa cells. (E) Regression 
analysis over the ordered series of four ROIs in (D) identified 1407 DE genes (P < 0.05), shown as a heatmap of genes (in rows) across the four samples. Color scale explained 
in Materials and Methods.
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We performed a series of DE analyses among these clusters to 
elucidate their functional characteristics (Materials and Methods). 
The medulla samples (cluster 5), when compared to cortex samples 
(clusters 1 to 3), showed higher expression of WFIKKN2, GSTM5, 
and IGFBP5 and enrichment for terms related to protein targeting 
to the endoplasmic reticulum and RNA translation (data S3 and S4, 
“DE11”). Conversely, the cortex samples showed higher expression 

of APOC1, DNAI3, CYP17A1, and DHCR24 (data S3 and S4, DE11). 
Within the cortex samples, clusters 1 to 4 represented several char-
acteristics. Cluster 4 was connected with CD68+ samples in cluster 6 
(Fig. 1E), suggesting that they carry local inflammation signatures. 
Cluster 3 (dark red in Fig.  1E) contained all 10 cyst samples and 
likely represents signatures of dysregulated follicle development or 
regressing follicles. Cluster 2 contained all six “rings” around the 

Fig. 4. Transcriptional heterogeneity across cortex and medulla areas. (A) In donor 1, a series of 11 consecutive tissue layers were sampled at the surface of the cortex, 
each with 30-μm depth and 350-μm width (scale bar, 2.5 mm; scale bar for inset, 100 μm). H&E image is shown. (B) Linear regression analysis over the 11 ordered samples 
identified 313 differentially expressed genes (P < 0.05), shown as a heatmap, with notable genes indicated to the right. Color scale explained in Materials and Methods. 
(C) Five straight-line series of 15 to 16 consecutive samples for donor 2, three for cortex regions (three warm colors) and two traversing the medulla (two blue colors), in-
dicated on the H&E image (scale bar, 2.5 mm). (D) PC1 to PC3 plots of the three cortex and two medulla series, each with 15 to 16 samples, plus the nine DAZL− subareas 
near the follicles. The six series are shown in different colors. (E) Comparison between the nine DAZL− near-follicle ROIs and the three surface-most cortex ROIs, one from 
each of the three cortex series, identified genes that are significantly (FDR < 0.05) higher (red, n = 33) and lower (blue, n = 21) in follicle-rich cortex versus cortex without 
follicles. The “volcano plot” of fold change (x axis) and negative logged FDR (y axis) is shown.
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primary follicles, while cluster 1 (bright red), consisting entirely of 
16 samples from the cortex series without drawing any other ROI 
types, was closest to the medulla profile in cluster 5 (Fig. 1F). In data 
S3 and S4, we compared clusters 1/3 against cluster 2 (DE8) and 
cluster 3 against cluster 1 (DE7) for increasingly finer distinctions 
among different types of cortex regions. For example, clusters 1/3 
showed higher expression than cluster 2 of DHCR24, CYP17A1, 
APOC1, and GSTA1 and enrichment for gene ontology terms related 
to cellular response to steroid synthesis and cholesterol metabolism. 
Conversely, cluster 2 showed higher expression of WFIKKN2, 
GSTM5, and IGFBP5 and enrichment for terms related to protein 
targeting to the endoplasmic reticulum and RNA translation. Simi-
lar DE results for the cortex and medulla clusters for donor 1 
(Fig. 1D) are also included in data S3 and S4.

We also compared transcriptional profiles of (i) cortex regions 
dense with follicles: the nine DAZL− samples against (ii) the three 
surface-most ROIs, which contained no follicles, one from each of 
the three cortex series. Both groups are composed of ovarian corti-
cal stromal cells but differ in their proximity to ovarian follicles: 
follicle-rich versus follicle-null. DE analysis revealed 38 genes with 
significantly (P < 0.05) higher expression in the follicle-rich cortex, 
including SPINT2 and ARHGEF15, and 26 genes with significantly 
(P < 0.05) lower expression (Fig. 4E). SPINT2 codes for the protein 
HAI2 and was highly expressed in granulosa cells previously (5). 
HAI2 is a key inhibitor in the hepatocyte growth factor (HGF) sig-
naling pathway, which has been shown to modulate the remodeling 
of the ovarian surface epithelium and cortex after the cyclic disrup-
tion caused by ovulation (26). ARHGEF15 was recently identified in 
Sertoli cells and shown to be essential to spermatogenesis (27). The 
identification of these genes in follicle-rich cortex may aid the un-
derstanding of how the cortex maintains a microenvironment con-
ducive to follicle development, from quiescence to activation.

scRNA-seq of three ovaries from reproductive-age women
Other than the two samples analyzed for ST, we collected scRNA-seq 
data from three additional donors (donors 3 to 5, ages 28, 37, and 31; 
fig. S1A). In all, we measured 37,047 cells, of which 21,198 passed 
quality filtering (Materials and Methods), with an average of 6950 
unique transcripts and 2066 detected genes per cell. Clustering anal-
ysis for each donor consistently revealed four major cell types (donor 
5 in Fig. 5A, donors 3 and 4 in fig. S5, A and B): stromal cells, im-
mune cells (appearing as two clusters in the joint analyses of all cells 
and as subclusters in Fig. 5B), endothelial cells, and pericytes, and 
they were identified by known marker genes (Fig. 5C). Endothelial 
cells showed high expression of their canonical markers VWF, PE-
CAM1, CD34, and CLDN5 (9, 13), as well as NOTCH4, which is 
typically confined to arterial and sprouting endothelial cells (28). 
Pericytes were identified by their characteristic expression of RGS5, 
NOTCH3, ACTA2, and MUSTN1 (Fig. 5, C and D). Pericytes in our 
data showed high expression of PDGFRB, which has been reported 
in other organ systems for platelet-derived growth factor (PDGF) 
signaling between pericytes and endothelial cells, and it is also es-
sential to proper theca cell development and steroidogenesis (29).

Focused clustering of the immune cells from all three donors re-
vealed four immune cell subtypes (Fig. 5B), which were annotated 
as T cells (CD3D, CD3G, and IL7R) (9, 13), natural killer (NK) cells 
(KLRD1, TRCD, and GNLY) (24, 30), macrophages (CD68, CD14, 
and FOLR2) (9, 13), and mast cells (KIT, TPSB2, and TPSAB1) (31, 
32) (Fig. 5C). Additional genes that are specific for the three major 

cell types and the four immune cell subtypes (Fig. 5D and data S2) 
add to the expanding cell atlas for the healthy human ovary.

Stromal cells had by far the largest number, reflecting the domi-
nance of this cell population in the ovary. As a group, they were char-
acterized by mesenchymal cell markers DCN and PDGFRA and the 
more recently reported ovarian stromal cell markers APOE, LUM, 
ARX, and FHL2 (Fig. 5D) (9, 13). Focused analyses of the stromal cells 
did not reveal clear subtypes (see Materials and Methods for details). 
Since the spatial analyses generated robust gene lists for the oocyte, 
theca cells, and granulosa cells, we used these marker panels to score 
each stromal cell for its chance to be a theca-like or granulosa-like stro-
mal cell and, in even rarer cases, be an oocyte. After carefully selecting 
the subset of stromal cells with high sequencing depth and using genes 
with high detection rate, we projected the stromal cells for each of the 
three donors separately and then asked whether the theca, granulosa, 
and oocyte scores tend to aggregate in some regions of the projection. 
Of the multiple scoring algorithms examined, a few showed that some 
stromal cells scored high for the theca gene panel, and many of them 
also scored high for the granulosa panel, although to a lesser degree 
(fig. S5B). Nonetheless, these stromal cells did not clearly separate as a 
distinct subtype. The oocyte scores did not reveal any clear-cut rare 
population to be potential oocytes (fig. S5B). This is not unexpected, as 
oocytes are extremely rare in the dissociated cells from the tissue and 
there is a ~30-μm size limit in the cell-capturing apparatus. In sum, 
stromal cells were the most abundant in our data and they appeared 
homogeneous, with some evidence for a rare subset to be theca-like.

Comparisons with previous scRNA-seq studies
We compared our marker gene lists from spatial data and the 
major cell types from scRNA-seq with two previously published 
scRNA-seq data for human ovary. Fan et al. (13) identified five 
major cell clusters, including a mixed theca/stromal (Th/S) popu-
lation and a granulosa cluster (G). We calculated centroid-centroid 
cross-correlation values between each of the five clusters in that 
study and each of our six ROI clusters in donor 1 and nine ROI 
clusters in donor 2 and observed the expected high correlation 
between Fan et al.’s (13) granulosa cluster and our granulosa ROI 
clusters (fig. S6A). The correlation with the Th/S cluster was high 
for our theca clusters, but also high for our cortex and medulla 
ROIs. The reduced specificity is likely because Th/S did not distin-
guish between the theca and stromal cells. Next, we examined the 
expression pattern of our three lists of marker genes in Fan et al.’s 
(13) cluster centroids. As expected, our granulosa markers show 
high expression in the G cluster, while our theca markers were 
moderately high in Th/S (fig. S6B).

Wagner et al. (9) identified six major cell types, including a 
granulosa cluster and an oocyte cluster. Centroid-centroid correla-
tion values revealed their high correspondence with our granulosa 
and oocyte ROI clusters (fig. S6C). Likewise, expression patterns 
of our marker genes showed high specificity in Wagner et al.’s (9) 
granulosa and oocyte cluster centroids (fig. S6D).

To compare with our scRNA-seq data, we calculated centroid-
centroid correlation values between our four major cell types with 
Fan et al.’s (13) five cell types (fig. S6E) and with Wagner et al.’s 
(9) six cell types (fig. S6F), and observed that the stromal, immune 
cells, and endothelial cells match across all three studies, while 
pericytes in Wagner et al. (9) and in our study match the smooth 
muscle cells in the Fan et al. (13) study. Last, we regenerated the 
t-distributed stochastic neighbor embedding (t-SNE) projection 
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of Fan et al.’s (13) single cells and calculated, for each cell, a “theca 
score” using our theca markers (Materials and Methods). In their 
Th/S cluster, there seemed to be a subcluster with high theca 
scores (fig. S6G), suggesting the existence of a subpopulation of 
theca-like cells that could have been revealed with the theca 
markers from our spatial data. We then calculated the correla-
tion values between our four immune cell subtypes and Fan et al.’s 
(13) finer subtypes (fig. S6H). While the mast cells we identified 
did not have a clear correspondence, our NK, T cell, and macro-
phage clusters correspond to their immune subtypes 1, 2, and 3, 
respectively. In sum, the comparisons with the two previous studies 
strengthened the validity of the three marker gene lists from our 
spatial data and verified the annotation of four major cell types in 
our scRNA-seq data.

DISCUSSION
In this study, we systematically analyzed the spatial and cellular hetero-
geneity of the human ovary using samples from donors without a 
history of cancer, previous androgen therapy, or known diseases that 
affect ovarian function. In contrast to biopsies taken during surgery, 
the whole cadaveric ovaries we used allowed us to select functional 
regions throughout the tissue for spatial analyses and to isolate single 
cells from both cortex and medulla. In the past, studies of ovarian 
function have faced at least three challenges. First, dissociated cells 
are dominated by the most abundant cell type: the stromal cells, 
while the functionally most important cells—those of the follicles—
are exceedingly rare, even in the ovarian cortex. Second, cell sorting 
efforts to enrich for oocytes, theca cells, or granulosa cells, and at-
tempts to visualize them in the intact tissue, relied on a few known 

Fig. 5. Cell types in the human ovary identified by scRNA-seq analysis. (A) t-SNE projection of 6339 cells from donor 5 colored by the four major cell types identified. 
(B) UMAP projection of immune cells (n = 863 from three donors) colored by the four immune cell subtypes identified. (C) Known marker genes used to annotate the three 
major cell types and four immune cell subtypes. Color indicates expression level, while symbol size indicates detection rate. (D) Centroid data for marker genes for the 
three major cell types and four immune cell subtypes. Number of genes displayed: stroma, 119; pericyte, 92; endothelial, 120; mast cell, 3; macrophage, 3; T cell, 9; NK cell, 
19 (data S6 and S7). Additional literature-based marker genes are indicated on the right. Color scale explained in Materials and Methods.
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markers, without characterizing the activities and spatial patterns of 
other genes in an unbiased fashion. Third, some of the earliest and 
most popular ST technologies are only able to analyze coarse regions 
at prespecified grid points (e.g., Visium’s spots are 55 μm in diameter, 
with a spot-to-spot distance of 100 μm), yet the functional units of 
the human ovary, especially the primordial and primary follicles, are 
in the size range of 20 to 50 μm. We addressed these challenges by 
adopting NanoString’s GeoMx technology, which is unbiased (i.e., it 
profiles nearly all coding genes) and allows focal analyses of individ-
ually selected tissue areas, or even subareas targeted by specific anti-
bodies. In all, we analyzed 92 samples from 74 ROIs in one donor, 
followed by 165 samples from 147 ROIs from a second donor, cover-
ing a wide variety of functional regions across the whole ovary. This 
strategy allowed us to avoid spending most of the resources on col-
lecting data from the stromal cells and yielded local transcriptomic 
profiles around both primordial/primary and antral follicles. We 
then complemented this powerful series of spatial data with scRNA-
seq, identifying major cell types such as stromal cells, pericytes, en-
dothelial cells, and four subtypes of immune cells.

For oocytes, we profiled an oocyte from an antral follicle in do-
nor 1 and 11 samples in donor 2 representing primordial and pri-
mary oocytes. These samples cluster well among themselves and are 
clearly enriched for canonical oocyte markers (Fig. 2B), confirming 
that the GeoMx technology, including the use of anti-DAZL anti-
body–guided sample collection, can profile oocytes in tissue sec-
tions. These data led to a list of 76 oocyte-specific genes, including 
those related to meiosis (REC114) and embryonic development 
(PADI6 and UCHL1) (Fig. 2, C and D). As a community resource, 
this list provides many more gene candidates than before for devel-
oping reagents to study oocytes of different stages.

Similarly, we took advantage of the custom ROI selection capa-
bility of GeoMx to identify dozens of genes specific for theca and 
granulosa cells (Fig. 3C). These two cell types reside in adjacent ar-
eas within developing follicles and are difficult to dissect into sepa-
rate samples. Thus, the fact that they arose in our data as distinct 
clusters (Fig. 1, D and E) and were stably reproduced across follicles 
and across donors confirms the functional identity of these cells as 
well as the location specificity of the technology. The list of theca-
specific genes included canonical theca cell markers CYP17A1, 
PTCH2, APOE, DHCR24, INSL3, BGN, and CYP11A1 (33, 34) and 
the more recently reported ANPEP (35) (data S5), as well as those 
not previously reported for theca, but having notable biological rel-
evance, such as S100A13, ALAS1, FDX1, and DLK1 (data S5). 
S100A13 codes for a calcium-binding protein and has been reported 
as enriched in Leydig cells in a comparison of cell lines from differ-
ent organ systems (36), but its biological importance in Leydig cells 
or their ovarian counterpart, theca cells, has yet to be elucidated 
(36). Notably, the list included FDX1 and ALAS1, which play impor-
tant roles in cholesterol acquisition and heme biosynthesis, respec-
tively, both of which are important for the conversion of cholesterol 
into androgens by the P50 steroidogenic enzymes in theca cells (37, 
38). Last, DLK1 codes for a transmembrane protein that has been 
implicated in growth hormone signaling, which is essential for theca 
cell differentiation (21, 39).

Likewise, the list of granulosa-specific genes included canonical 
marker genes HSD17B1, INHBB, FOXL2, and AMH and the recently 
reported TNNI3, MAGED2, CD99, SERPINE2, CDH2, and BEX1 (9, 
13), along with many histone protein-coding genes (data S5), which 
have not been reported for granulosa cells. However, numerous studies 

have suggested that proliferating granulosa cells undergo large-scale 
epigenetic change during late folliculogenesis, partly driven by 
gonadotrophins such FSH (40–43). The list also included genes in-
volved in granulosa cell–oocyte signaling, such as the transzonal 
projection–related genes FSCN1 and MYO10, and the tetraspanin 
protein gene TSPAN7, which is involved in extracellular vesicle–
mediated signaling between granulosa cells and the oocyte (44, 45). 
The list confirmed many of the genes previously reported as up-
regulated in granulosa cells in RNA-based comparisons: LIMS2, 
CORO2A, LAMA1, FAM78A, ST6GAL2, and MFAP2 (20, 46, 47). 
Further analyses revealed the finer distinction between cumulus 
granulosa and the other granulosa layers (Fig. 3, A and B), and a 
gene activity gradient across concentric layers of cumulus granulosa 
around the oocyte in an antral follicle (Fig. 3, D and E). More detailed 
analyses of such gradients are needed to examine the long-standing 
hypothesis of bidirectional cross-talk between the oocyte and the 
cumulus cells during follicle development (1–3).

We collected nine sample pairs in cortex regions dense with pri-
mordial and primary follicles, where the DAZL+ sample of the pair 
corresponds to the oocyte, while the DAZL− sample represents cor-
tex cells surrounding the follicles (Fig. 2A). The DAZL−, “follicle-
rich” cortex regions gave us the opportunity to compare them with 
other “follicle-null” outer cortex samples (fig. S4D) to identify genes 
that may be involved in the development of primordial and primary 
follicles through the emergence of theca and granulosa cells, and 
through their spatial organization around the maturing oocyte. This 
analysis highlighted genes related to steroidogenesis (ARHGEF15 
and GSTP1) and tissue remodeling (SPINT2) (Fig.  4E), and they 
need further validation to understand how the ovarian stroma influ-
ences follicle quiescence and early development.

Since it is impractical to cover the entire tissue section with ROIs, 
we systematically profiled serial samples across several cortex and 
medulla regions. In donor 1, we used 11 consecutive samples, at 
30-μm-thick increments, to study the outer cortex, and observed a 
graded change in genes related to hormone signaling (NR4A1, STAR, 
and ADAMTS4) and ECM remodeling (VIM and COL8/12/14/16/18) 
(Fig. 4, A and B). Using a similar approach in donor 2, we sampled 
three straight-line, linear series, with 100-μm increments, to span the 
full 1.5-mm depth of the cortex, and two series of medulla samples to 
traverse the entire long and short axis of the tissue. These cortex and 
medulla series did not show clean gradients (Fig. 4C); rather, they 
confirmed the medulla-cortex difference (Fig.  4D) we had seen in 
donor 1 and revealed transcriptional variation across the surface and 
the interior of the ovary. For example, the cortex series, from the very 
surface to 1.5 mm deep, did not always “start” in the same transcrip-
tomic state (fig. S4D), nor end in similar profiles; rather, the 15 or 16 
samples in each series “visited” multiple functional characteristics 
(fig. S4C) that may correspond to areas of atresia, vasculature, or im-
mune activity, which were not evident at the time of sample selection. 
Nonetheless, some broad patterns did emerge: The two medulla se-
ries are similar and clustered away from the three cortex series 
(Fig.  4D), and one of the three cortex series is more medulla-like 
(fig. S4B). Within the cortex samples, we found a steroidogenic pro-
file in clusters 1 and 3, with high expression of DHCR24, CYP17A1, 
and GSTA1, while cluster 2 showed high expression of WFIKKN2, 
GSTM5, and IGFBP5 (DE8 in data S3). Future studies will need dens-
er sampling and more detailed local phenotyping to fully understand 
the functional changes that accompany follicle development in vari-
ous regions of the medulla and cortex.
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Our scRNA-seq data revealed four major cell types, which are 
mostly in agreement with those reported by two previous studies. In 
one, Fan et al. (13) analyzed 20,676 cells isolated from antral follicles 
from five donors undergoing fertility preservation before anticancer 
treatment and identified five major types: Th/S, granulosa (G), im-
mune (Imm), endothelial (E), or smooth muscle (SmMusc) (13). On 
the basis of comparative analyses in fig.  S6 (A and B) and the top 
marker genes reported for each cluster, their Th/S clusters likely 
matched our stromal cells (TCF21, DCN, LUM, IGFBP5, and APOE). 
Three of their immune clusters corresponded to our NK cells (GNLY, 
KLRD1, and CTSW), T cells (CD3D and CXCR4), and macrophages 
(fig. S6H), respectively. Their endothelial clusters mapped to our en-
dothelial cells (VWF, A2M, and CLDN5), while their smooth muscle 
clusters corresponded to our pericytes (RGS5, ACTA2, and TAGLN), 
as also seen in fig.  S6C. We did not enrich for rare follicular cells 
through follicle resection or marker-guided enrichment, and as a re-
sult, we did not identify granulosa and theca cell clusters. However, 
the granulosa- and theca-enriched ROIs from our spatial analysis 
emerged as distinct clusters, and they correlated specifically with the 
Th/S and granulosa clusters, respectively, from the Fan et al. (13) 
study. In a second study, Wagner et al. (9) profiled 12,160 cells isolated 
from the ovarian cortex of four donors undergoing caesarean section 
or gender reassignment surgery (9) and identified five types of so-
matic cells: immune, endothelial, granulosa, stromal, and smooth 
muscle cells. They reported high expression of PDGFRA, DCN, CO-
L1A1, and COL6A1 in their stromal cells, which matched our stroma 
cluster. Likewise, they reported high expression of MYH11, MCAM, 
RGS5, and TAGLN in smooth muscle cells, which corresponded to 
our pericytes. Their endothelial cells had high expression of VWF and 
CDH5, matching our endothelial cell cluster. These matches are also 
seen in fig. S6 (C and D and E and F). For immune cells, they identi-
fied a coarse group of cells expressing markers for T cells (CD2, 
CD3G, and CD8A) and antigen-presenting cells (CD14 and B2M), 
while we identified four specific immune cell types. As explained 
above, we did not find granulosa cells in our scRNA-seq data. Rather, 
it was our spatial data that led to robust marker genes for each follicu-
lar cell type, which included canonical markers like FOXL2, AMH, 
and INHBB for granulosa; CYP17A1, CYP11A1, and PTCH2 for the-
ca; and dozens of previously unreported markers (Fig. 3C and data 
S5). By using our theca gene panels, we were able to suggest that a 
subset of Th/S cells in Fan et al. (13) could have been theca cells 
(fig. S6G), demonstrating how spatial data added value by comple-
menting scRNA-seq data.

The RNA markers reported for the oocyte, theca cells, and granu-
losa cells in the ovary are among the strongest contributions of this 
study. While most of them await further in situ validation using RNA 
and protein immunostaining, we expect them to validate well, as the 
theca and granulosa ROI clusters are robust (Figs. 1, D and E and 3, 
A and B) and consistent across samples (Figs. 2D and3C). To aid the 
planning of such studies, we provided tiers of evidence based on 
literature references and previous knowledge of gene function (data 
S5). Some of these markers can be further developed into probes for 
isolating specific cell population for in-depth experimentation, such 
as being used to improve in vitro follicle culture or to promote the 
differentiation and maturation of stem cell–derived oocytes, instead 
of using fetal somatic cells (37, 38), or they can be used in the 
isolation of steroidogenic cells expressing genes such as STAR and 
CYP17A1 for hormone production in vitro. The markers may also be 
used for higher-resolution spatial analysis and lineage tracing, or as 

targets of perturbation to understand the wide range of disorders 
affecting the female reproductive system, such as female infertility, 
ovarian aging, or somatic aberrations that lead to cancers.

While the three marker panels seem robust, the findings for the 
cortex surface gradient (Fig. 4, A and B) and the gradient in the con-
centric rings around the oocyte (Fig. 3, D and E) are in need of replica-
tion in other samples and validation by in situ imaging. We acknowledge 
this as a major limitation of the current study. Meanwhile, our experi-
ence also underscored the limitations of the current ST technologies. 
For small functional units like the ovarian follicles, single-cell or even 
subcellular resolution is needed to fully elucidate the local cross-talk 
between the oocyte and its surrounding cell community. Highly multi-
plexed in situ imaging methods such as multiplexed error-robust fluo-
rescence in situ hybridization (MERFISH) can measure the distribution 
of single RNA molecules for a few hundred RNA markers (39), and 
our lists of oocyte-, theca-, and granulosa-specific genes are essential 
and ideally suited for the optimal design of such gene panels. We ex-
pect that the rapidly improving resolution and multiplexity will soon 
allow us to study all stages of oocyte development, from the smallest 
primordial follicles to transitional and primary follicles and onward to 
antral follicles, the corpus luteum, and other events in follicle matura-
tion and degeneration. The single-cell and spatial analyses we report 
here serve as a key step toward these more powerful data series, which 
are needed for understanding healthy ovarian function across the 
female reproductive life span, as well as disorders such as polycystic 
ovarian syndrome, premature ovarian aging, and ovarian cancers.

MATERIALS AND METHODS
Ethical approval process for cadaveric samples
This study used tissue samples from five deidentified deceased do-
nors procured through the International Institute for the Advance-
ment of Medicine (IIAM) and the associated Organ Procurement 
Organization (OPO) involved in collection. The use of cadaveric 
tissue in this research is categorized as “not regulated,” per 45 CFR 
46.102 and the “Common Rule,” as it does not involve human sub-
jects, and complies with the University of Michigan’s Institutional 
Review Board requirements as such.

Ovarian donor tissue processing
All five donors were premenopausal, and examination of provided 
medical records indicated no pathological conditions affecting ovarian 
function (for their age, body mass index, recorded “race,” and cold 
ischemic time; see fig. S1A). Before cross-clamp, the organs were per-
fused with Belzer University of Wisconsin Cold Storage Solution 
(Bridge of Life, SC, USA), Custodiol HTK (Histidine-Tryptophan-
Ketoglutarate) Solution (Essential Pharmaceuticals, NC, USA), or 
SPS-1 Static Preservation Solution (Organ Recover Systems, IL, USA).

GeoMx ST experiments
Slide preparation and ROI sample collection
The cross sections of fresh ovarian tissue from donors 1 and 2 were 
resected from the central region of the organ along the short axis and 
then fixed in 4% paraformaldehyde (Fisher Scientific) for 24 hours at 
4°C and rinsed five times for 24 hours each in Dulbecco’s phosphate-
buffered saline without calcium or magnesium (DPBS−/−) at 4°C. The 
tissue was then embedded in paraffin for sectioning. Every other 
5-μm section was stained with hematoxylin and eosin (H&E; Fisher 
Scientific) to select an unstained slide for spatial analysis. The selected 
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slides from donors 1 and 2 were deparaffinized and rehydrated, fol-
lowed by antigen retrieval for 15 min at 90°C in tris-EDTA (Fisher 
Scientific). RNA targets were exposed using proteinase K (1 μg/ml) in 
PBS for 15 min at 37°C. For in situ hybridization, GeoMx reagents 
and protocols were used according to the manufacturer’s instructions. 
The slide was stained with morphology markers before RNA collec-
tion. For donor 1, we used SYTO82 (a nuclei marker, Thermo Fisher 
Scientific, USA) and three protein markers: anti–smooth muscle actin 
to visualize pericytes and smooth muscle cells (SMA; α–smooth mus-
cle actin monoclonal antibody conjugated to Alexa Fluor 488, Ther-
mo Fisher Scientific, USA), anti-Ki67 to visualize proliferating cells 
(rabbit monoclonal 9027S, Cell Signaling Technology, USA), and 
anti-CD68 (sc-20060 AF594, Santa Cruz Biotechnology, USA). For 
donor 2, we again used SYTO82 and anti-CD68, along with anti-
DAZL to visualize oocytes (MCA2336, Bio-Rad, USA) and anti-PGR 
to visualize cells expressing PGR such as luteinized follicular cells 
(ab63605, Abcam, USA).
NanoString library preparation and sequencing
The prepared slide was covered with Buffer S (NanoString, USA) and 
loaded into the NanoString GeoMx DSP instrument, which uses 
digital images of a slide-mounted tissue section, with up to four fluo-
rescently labeled markers, to guide the selection of ROIs. ROIs are 
defined by the user based on cell morphology and related tissue fea-
tures, using the “polygon,” “contour,” and “segmentation” tools pro-
vided in GeoMx DSP. Target enrichment ROIs were segmented into 
AOIs based on staining for CD68, Ki67, SMA, DAZL, and PGR. To 
collect concentric ROIs from ovarian follicles, a mask was designed 
in ImageJ (40) and imposed on the follicle’s region in the tissue.

In this experiment, RNA molecules are affixed by photocleavable 
linkers; then, programmable ultraviolet light is used to release RNA 
from each ROI. RNA samples are collected by microcapillary aspira-
tion into microtiter wells for sequencing-based analysis. In some 
cases, the selection was aided by histological images of one or both 
of the flanking tissue sections, which were not used for sample col-
lection. Some of the ROIs are serial subdivisions of the same mor-
phological area to capture local spatial changes. Some of the ROIs 
produced two to three AOIs/samples each due to targeted enrich-
ment using one or two of the protein markers. Each sample is associ-
ated with additional information about its location, surface area 
(μm2), and number of nuclei (an estimate of cell number) (data S1).
NanoString statistical analysis
We used the GeoMx analysis software to process the NanoString data, 
including steps for read decoding, trimming, and deduplication, and 
obtained the gene-by-sample read count data for 18,676 genes pass-
ing GeoMx’s default quality control (QC) criteria. This is after remov-
ing gene #1309, “NegProbe-WTX,” from the original data matrix. For 
donor 1, we initially collected 94 samples; however, two yielded fewer 
than 100,000 reads and were removed, leaving 92 samples, which 
came from 74 ROIs. They represent 14 “ROI types,” as described in 
Fig. 1F and data S1. The 92 samples had library size (i.e., total read 
count) ranging from 146,463 to 4,464,464 (mean = 805,579), surface 
area ranging from 7619 to 359,037 μm2 (mean = 60,591 μm2), and 
nuclei counts ranging from 0 to 2544 (mean = 424) (data S1). Raw 
counts, which were already floored at 1 rather than 0 by NanoString, 
were normalized into counts per million (CPM), then log-transformed 
with base 2, and quantile-normalized. These 92-sample normalized 
data were used in the analyses shown in Fig. 3A. For all other analyses 
presented, we condensed the target-enriched AOIs from the same 
ROI into a single sample by summing up the reads over the AOIs, 

leading to the reduction of 29 AOIs to 11 ROIs, and the total sample 
number from 92 to 74. These 74 samples were similarly normalized to 
CPM, log2-transformed, quantile-normalized, and subjected to PCA 
and k-means clustering (k = 6) shown in Fig. 1D. We also observed 
that ROIs collected using an anti-Ki67 antibody (intended to target 
proliferating cells) showed poor antibody localization and low ROI 
expression of Ki67.

For donor 2, the 165 samples from 147 ROIs were normalized to 
CPM, log2-transformed, and quantile-normalized, with PCA and k-
means clustering (k = 9) shown in Fig. 1E and figs. S1E, S2B, and 
S4B. The 165 samples from donor 2 had library sizes ranging from 
24,862 to 3,404,417 (mean = 506,800), surface area ranging from 577 
to 113,205 μm2 (mean  =  30,152 μm2), and nuclei counts ranging 
from 0 to 1497 (mean = 240) (data S1). ROI selection for donor 2 
covered 12 ROI types, including 7 of the 14 ROI types analyzed in 
donor 1 and 5 additional ROI types, bringing the total to 19.

While the analyses were based on NanoString’s floor  =  1 raw 
counts data, we examined an alternative method: minus 1 on all 
counts data, recalculate CPM, and then obtain log2(CPM + 1). We 
found that the difference is minor in terms of the PCA projection of 
the 92 sample; thus, we opted to stay with the log2(CPM) method on 
the original, floor = 1 data. The quantile-normalized data for 74 ROI-
based samples for donor 1 and the 165 AOI-based samples for donor 
2 were shown in Figs.  2D and3C for the marker genes for oocyte, 
theca cells, and granulosa cells, as discussed in the main text. These 
quantile-normalized data were also used in PCA for subsets of sam-
ples, shown in Figs. 3B and4D and fig. S4 (B to D). For Figs. 2D and3C, 
the expression values for each gene were standardized for the 74 
donor 1 samples and the 165 donor 2 samples separately, and shown 
in the heatmaps with a symmetrical, blue-to-red color palette. 
Here, “standardized” means centering by the mean and scaling 
by the SD.
Cluster analysis of NanoString data
For donor 1, PC1-PC2 in Fig.  1D revealed the separation of five 
clusters (C1 to C5). The sole oocyte sample separated itself in PC3 
(fig. S1C) and was designated cluster 6 (C6). For donor 2, clustering 
was performed on all 165 samples (without consolidation of target-
enriched samples) to highlight the unique signature of primordial/
primary oocytes (ROI type #4) captured by DAZL, with k-means 
clustering (k = 9) shown in Fig. 1E. Centroid data, using the post-
log transformation and quantile normalization data, for the six clus-
ters from donor 1 and the nine clusters from donor 2, are included 
in data S2.
DE analysis
We performed 17 series of DE analysis for donor 1 using the 
quantile-normalized log2(CPM) data for 74 ROIs. Each DE analysis 
compares two groups of ROIs, as described below, and produced 
four statistics: fold change (FC), t score, raw P value, and adjusted P 
value, i.e., the Benjamini-Hochberg FDR (all provided in data S3). 
FC is reported on the log2 scale, and the t score is from t test without 
assuming equal variance in the two groups being compared.

The 17 DE series for donor 1 are for comparing samples in each 
cluster with those in all other clusters (cluster1vsAll, cluster2vsAll, 
cluster3vsAll, cluster4vsAll, and cluster5vsAll), comparing one clus-
ter with its “adjacent” cluster (cluster1vs2, cluster2vs3, cluster3vs4, 
and cluster4vs5), and comparing target-enriched areas against their 
matched unenriched AOIs using paired t test: SMA (SMA+ areas 
against their matched, untargeted area), CD68 (CD68+ areas against 
their matched, untargeted area), Ki67 (Ki67+ areas against their 
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matched, untargeted area), gradient in the cortex surface (linear 
regression across the 11 consecutive cortex surface layers, Fig. 4B), 
in Ring34 (regression across the four consecutive cumulus cell rings 
around antral follicle 1, shown in Fig. 3, D and E), Ring52 (regres-
sion across the five consecutive rings around the secondary follicle), 
cluster6vsAll (only FC, as there is only one sample in cluster 6), and 
cluster5vs6 (only FC). The five sets of one-cluster-versus-all-other 
comparison (such as cluster1vsAll) are based on the 73 ROIs with-
out using the oocyte sample. Positive FC and t score values indicate 
that the expression is higher in this one cluster. In the four sets of 
one-cluster-versus-the-adjacent comparison (such as cluster1vs2), 
positive FC and t score values indicate that the expression is higher 
in the second higher numbered cluster. The three DE results for tar-
geted AOIs are based on paired t tests for SMA (eight pairs), CD68 
(three pairs), and Ki67 (seven pairs). Positive values mean higher 
expression in the enriched AOIs. This analysis relied on the 29 tar-
geted samples from the 11 ROIs, using quantile normalization 
among the 29 rather than the quantile-normalized data across the 
entire set of 92 or 74 samples. In the cortex layer gradient analysis, 
positive values mean higher expression toward the surface. FC is the 
fitted slope over the series of layer numbers, 1 to 11. Since all FCs are 
in the log2 scale, a slope of 1/11 means an FC of 0.0909 per layer, or 
an FC of 1.0 overall, or twofold increase after 11 layers, spanning 
about 330 μm. In antral follicle 2, the oocyte is not present in the 
sampled section, although it is discernible in the H&E image of the 
adjacent section. For the regression result of the gradient across 
the four rings in “Ring34” and five rings in “Ring52,” positive values 
mean higher expression toward the outside of the follicle. FC is the 
slope in the unit of per-ring. For instance, in ring34, an FC of one of 
four would mean an FC of one overall, or twofold change between 
the first and the fourth ring. Note that the center ROI of follicle, for 
both ring34 and ring52, was not used in the regression.

For donor 2, we performed 12 series of DE analysis using the 
quantile-normalized log2(CPM) data for all 165 ROIs. Each DE 
analysis compares two groups of ROIs, as described below, and pro-
duced the same four statistics: FC, t score, P value, and FDR-adjusted 
P value, which are all provided in data S3. The 12 DE series are as 
follows: cumulus versus non-cumulus granulosa (ROI type #13 ver-
sus type #12, denoted d13.12), theca versus granulosa (ROI type #14 
versus types #12 and #13, denoted d14.1312), oocyte versus other 
(ROI type #4, n = 11, versus the other 154 ROIs, denoted oocyte.
other), medulla versus similar cortex (cluster 5, n = 38, versus clus-
ter 2, n = 28, denoted d5.2), granulosa versus other (ROI types #12 
and #13, n  =  18, versus all other ROIs minus the 11 samples for 
primordial and primary oocytes, n = 136, designed to be compara-
ble to donor 1 granulosa DE results, denoted gc.other), theca versus 
other (ROI type #14, n = 7, versus all other ROIs minus primordial 
and primary oocytes, n = 118, designed to be comparable to donor 
1 theca DE results, denoted tc.other), ovarian cyst versus other cor-
tex (cluster 3, for ovarian cyst, n = 21 versus cluster 1, n = 16, de-
noted d3.1), within-cortex comparison (cluster 2 cortex samples, 
n  =  28, versus clusters 1 and 3, n  =  37, denoted d2.13), CD68-
enriched (n = 6) versus all other ROIs minus primordial and pri-
mary oocytes (n  =  130) (designed to be comparable to donor 1 
CD68-enriched DE results, denoted cd68.other), medulla versus 
proximal cortex (cluster 5 medulla samples, n = 38, versus cluster 1 
and 3 cortex samples, n  =  37, denoted d5.13), medulla versus all 
cortex (cluster 5 medulla samples, n = 38, versus cluster 1 to 3 cortex 
samples, n = 65, denoted d5.123), and follicle rich versus follicle null 

(the nine DAZL+ AOIs versus surface-most samples from the three 
cortex series, ROIs #61, #67, and #95, denoted richvnull, shown in 
Fig. 4E).
Pathway analysis of DE results
We used LRpath (48) to examine the enrichment pattern of Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology 
(GO) terms in each of the DE results. We converted gene symbols to 
Entrez IDs and uploaded the P value (for ranking significance) and 
FC (for direction of change) as input data. We selected “directional 
analysis” to separate enrichment signals for up- and down-regulation. 
For all 8423 GO and KEGG terms and each DE series, we collected 
odds ratio (OR) of enrichment, P value, and FDR. When OR > 1, the 
genes in this pathway are enriched among those with positive t scores 
in the gene-level analysis. For the two DE analyses involving donor 1 
cluster 6, since there is only one oocyte sample and only FC (with t 
score or P value), we created a mock P value based on FC so that both 
significance rank and direction are available in the input file. All re-
sults are provided in data S4. For some of the comparisons, we only 
evaluated pathways with positive t scores (OR > 1), as the other di-
rection is the “background” (e.g., one cluster versus all other). Note 
that pathway terms with too few genes tend to be noisy and have less 
significant P values. Those with too many genes tend to have signifi-
cant P values even when the enrichment ratio is moderate.
Identification of marker genes for oocyte, theca cells, and 
granulosa cells
The 76 oocyte marker genes (Fig. 3D) came from the oocyte versus 
other FC > 2. The 45 theca cell marker genes (Fig. 4C) came from 
theca versus granulosa FC > 1.2 and theca versus other FC > 1, mi-
nus one gene that also appeared in the 76 oocyte markers. The 94 
granulosa cell marker genes (Fig. 4C) came from theca versus gran-
ulosa FC < (−1) and granulosa versus other FC > 1.5, minus two 
genes that also appeared in the 76 oocyte markers.

scRNA-seq experiments using 10X Chromium
Tissue dissociation, cell sorting, and sequencing  
data collection
We collected scRNA-seq data from three additional donors (fig. S1A). 
Upon arrival, ovarian tissue (cortex and medulla) from donors 3 to 5 
was chopped into ~1-mm cubes at room temperature in Quinn’s Ad-
vantage Medium with Hepes (CooperSurgical, Denmark) with 10% 
Quinn’s Advantage Serum Protein Substitute (CooperSurgical). These 
tissue cubes were rinsed twice with DPBS−/− (Fisher Scientific, USA) 
and then transferred to a digestion solution containing collagenase IA 
(0.5 mg/ml; Sigma-Aldrich, Germany) and deoxyribonuclease I (0.01 
mg/ml; Worthington Biochemical, USA) in DPBS with calcium and 
magnesium (DPBS+/+, Fisher Scientific). Tissue was transferred to a 
shaker of 150 rpm to digest for 30 min at 37°C, and then the tissue 
was strained through a 70-μm strainer (Fisher Scientific), followed by 
a 30-μm strainer (PluriSelect, USA). The cell suspension was quenched 
with ice-cold 10% fetal bovine serum (Fisher Scientific) in DPBS−/−. 
The remaining tissue with undissociated cells was placed in fresh 
digestion solution and shaken for an additional 30 min before straining 
and quenching. Cell suspensions were stored on ice and treated with 
red blood cell lysis buffer (BioLegend, USA) according to the manufac-
turer’s instructions. Suspensions were then rinsed in 1% bovine serum 
albumin (BSA; Fisher Scientific) in DPBS−/− followed by 0.04% BSA in 
DPBS−/− to remove debris. Cells were pelleted at 100g for 5 min be-
tween all rinsing steps. Cortex and medulla were enzymatically digested 
separately and then combined into a single-cell suspension at a 1:1 ratio. 
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Combined cortex/medulla single-cell suspensions from tissue dissoci-
ation were incubated with 3 μM 4′,6-diamidino-2-phenylindole, dihy-
drochloride (DAPI; Fisher Scientific) per 1 million cells for 30 min on 
ice in preparation for fluorescence-activated cell sorting (FACS) at the 
University of Michigan’s Flow Cytometry Core. Cells were sorted on 
a MoFlow Astrios (Beckman Coulter, USA) to remove dead cells 
(DAPI+) and collect live cells (DAPI−). FlowJo v10 software was used 
for gating and cell counting. We performed three runs of scRNA-seq 
using dissociated cells from donors 3, 4, and 5, respectively, thus creat-
ing three experimental batches. Freshly sorted cells were submitted to 
the Advanced Genomics Core at the University of Michigan, loaded 
to the 10X Genomics Chromium controller for droplet-based single-
cell capture. Cell lysis and RNA-seq library preparation used the Chro-
mium Next GEM Single Cell 3′ LT Kit according to the manufacturer’s 
instructions. Libraries were sequenced on NovaSeq F0 using an S4 flow 
cell. The Core performed basic QC and read alignment using standard 
procedures, and provided unique molecular identifier (UMI) counts 
data in a cell-by-gene matrix for each sample.
Statistical analysis
ScRNA data from the three donors were initially processed by the 
Univerisity of Michigan Advanced Genomics Core using Cell Rang-
er v4.0.0. The main steps include the extraction of cell barcodes and 
the UMIs from the raw paired-end sequencing reads, alignment to 
human Ensembl genes, and UMI-based deduplication, leading to a 
cell-by-gene UMI count table, represented by the “filtered_feature_
bc_matrix” for 14,322, 13,901, and 9149 cells for the three samples, 
respectively, for 20,886 genes.

Downstream analysis used a combination of Seurat and custom 
codes in R. Cell filtering used (i) minimal number of UMI (called 
“nCount” in Seurat) and (ii) % of transcripts corresponding to 
mitochondria-encoded genes (“% MT”). The cutoff values varied for 
the three samples: nCount: 2300, 1275, and 1096; % MT: 15, 12, and 
15, respectively. The cutoffs were chosen on the basis of each sam-
ple’s distribution of nCount and % MT (not shown). After filtering, 
there are 7571, 7228, and 6339 cells left for further analysis. The av-
erage of nCount, number of genes detected (“nFeature”), and % MT 
for these cells are shown in fig. S1A.
Identification of major cell types
We normalized the counts data to CPM and analyzed the log2(CPM + 1) 
data for the three donors separately. Initial analyses showed that donor 
5 contained the greatest proportion of nonstromal cells, and we ana-
lyzed this donor’s 6339 cells first. We selected 2034 genes of high ex-
pression and high variability for PCA and used the top 50 PCs for 
k-means cluster (k = 14) and t-SNE projection (Fig. 5A). The 14 clus-
ters can be merged to five main clusters (Fig. 5A), corresponding to 
stroma cells, two apparent subtypes of immune cells, pericyte, and en-
dothelial cells, as annotated by marker gene expression (Fig. 5, C and 
D). Of the 6339 cells, 5399 (85.2%) were stromal cells.

For donors 3 and 4, since the stromal cells dominated more 
strongly than in donor 5, k-means clustering could not readily sepa-
rate the nonstromal cells, although they appeared in distinct clusters 
in t-SNE (fig. S5, A and B). We used the centroids of the five main cell 
types in donor 5 to perform supervised annotation for cells in donors 
3 and 4 (i.e., a cell is assigned to a cell type by the maximal correlation 
among the five centroids), with the resulting cell label shown in 
fig. S5 (A and B). For donors 3 and 4, the analyses proceeded by the 
selection of 3702 and 2251 genes, respectively, that were highly ex-
pressed and highly variable, followed by PCA and t-SNE projection 
using the top 50 PCs. After supervised cell annotation, 7438 of the 

7571 cells (98.2%) in donor 3, and 7052 of the 7228 cells (97.6%) in 
donor 4, were stromal cells. Marker genes shown in Fig. 5D came 
from a series of DE analyses comparing one cell type against the 
other, as was done for the immune cell types described below.
Identification of four immune cell types
For immune cells, we combined the 59, 133, and 671 immune 
cells from donors 3, 4, and 5, respectively, and reran PCA for 
these 863 cells. Uniform Manifold Approximation and Projection 
(UMAP) projection using the top 20 PCs revealed four immune cell 
subtypes (Fig. 5B). Marker-based annotation (Fig. 5, C and D) iden-
tified them as NK cells (n =  105), T cells (n =  409), macrophage 
(n = 319), and mast cells (n = 30).
Lack of heterogeneity among stromal cells
We attempted to identify subtypes of stromal cells or gradients among 
them that could reflect shifting regulatory states. We observed that 
the stromal cells in our datasets were notably uniform in their expres-
sion profile. The donor-to-donor variation (i.e., the “batch effect”), 
while not a prominent factor in the identification of major cell types 
or immune cell subtypes (as shown in Fig.  5), became dominant 
when characterizing the variation among stromal cells. Further, slight 
changes in gene selection, or in the algorithm dealing with the 
0-counts (e.g., using CPM or CPK—counts per thousand), markedly 
altered PCA, subsequent UMAP or t-SNE projection, or the k-
means clustering results. Most projections and clustering solutions 
were driven by the cells’ “library size,” hence by their length of 0- and 
1-counts, suggesting that there is no discernible heterogeneity among 
the stromal cells.

For instance, among the 5399 stromal cells in donor 5, we se-
lected 4881 cells of the largest library size and then selected 3473 
most highly expressed genes for use in PCA and in t-SNE projection 
using the top 50 PCs. In parallel, we reran quantile normalization 
using the 4881-by-3473 data and subsequent PCA and t-SNE. In the 
third option, we “imputed” 0 CPM values in each sample with the 
half of the minimal nonzero CPM value, calculated CPM again, and 
ran quantile normalization of log2(new-CPM), followed by PCA 
and UMAP and t-SNE projections. In additional tries, we ran analy-
sis on a more stringent set of 2122 cells and repeated the procedure 
on donor 3 and 4 stromal cells with multiple selections of the stron-
gest cells and strongest genes. In all case, the projections failed to 
reveal separate groups of cells (not shown), and the persistent uni-
modal distribution was driven by gradients of library size.

In an alternative, supervised approach, we took advantage of 
the robust gene sets from the NanoString data for oocytes, theca 
cells, and granulosa cells (Figs. 2D and3C) to calculate an oocyte 
score, a theca score, and a granulosa score for each stromal cell. 
This is essentially an attempt to identify the rare subsets of stromal 
cells that could have been oocytes or theca or granulosa cells that 
were difficult to uncover using unsupervised approaches. For each 
cell, we summed the expression values over the 76 oocyte marker 
genes, 45 theca markers, and 94 granulosa markers, in either the 
linear CPM space or the log(CPM + 1) space (or CPM imputed 
with half-minimal values), with or without normalizing each cell’s 
score by its library size, in either the linear or the log space. Of all 
the combinatorial options of constructing such scores, a few 
showed that some cells seemed to have a theca-like character and 
were near each other in UMAP, and some of them also showed a 
granulosa-like character. An example is shown in fig. S5B. However, 
they do not appear as a distinct subtype of stromal cells. There is 
no evidence that cells at the periphery of the UMAP projection 
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were hybrid cells with nonstromal cells (using markers for major 
cell types; not shown).
Comparisons with previous single-cell studies
We downloaded the scRNA-seq data from Fan et al. (13) and used 
Seurat to generate cell type centroids and t-SNE projection shown in 
fig. S6G. The centroid-centroid correlations in fig. S6A were calcu-
lated using 442 genes, which is the overlap between 2000 highly 
variable genes (HVGs) in our data and the 2000 HVGs in Fan et al. 
(13). The centroid-centroid correlations with Wagner et al. (9) data 
(fig. S6C) used 469 genes that overlapped between 2000 HVGs in 
our data and 2000 HVGs in the Wagner study. Marker gene expres-
sion in fig. S6 (B and D) used gene lists from data S5 and ordered in 
the same way, with each gene’s values centered by mean and scaled 
by SD across the centroids in the Fan data and the Wagner data. The 
correlations shown in fig. S6E are Spearman’s correlation coefficients 
using all 15,510 genes that overlapped between the Fan study and 
our study, while those in fig. S6F are Spearman’s correlation coeffi-
cients using 1907 genes, which is the overlap of our 2000 HVGs and 
all genes in the Wagner study. Cluster labels in fig. S6G (left) were 
downloaded from Fan et al. (13). The theca score for the cells in the 
Fan study (fig. S6G, right) is calculated as the sum of log(CPM + 1) 
values over the 45 theca marker genes. Correlations in fig. S6H used 
our 2000 HVGs within the immune cells, reduced to 426 genes by 
overlapping with Fan’s 2000 HVGs.
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